
Dynamic Programming in Haskell

Christian Neukirchen∗

March 2006

The purpose of this Literate Haskell program is to implement a function that does
global sequence alignment using Needleman/Wunsch techniques.1

The algorithm is based on two steps: first, filling a matrix with the maximal
alignment scores for each element and then tracing a path connecting the top-left
and the bottom-right cell. Note that the matrix is O(n · m) memory-wise and
therefore pretty inefficient, you don’t want to use this on bigger sequences.

In Haskell, a good way to implement Dynamic Programming like this is an array
that will memoize a lazy stream of scores per cell. This allows O(1)-lookup of for-
merly calculated values without losing referential transparency and (to an extent)
lazy evaluation.

import Array

align is the function that wraps all the functions below and calls them in correct
order. It takes two strings and returns them aligned:

align :: String → String → [String]
align da db = format $ reverse $ traceback lena lenb

where
lena = length da
lenb = length db

The algorithm is easier to express when the sequences to align are one-indexed,
since the borders of the matrix are used as special values. An easy way to achieve
this is prepending a space:

a = ’ ’ : da
b = ’ ’ : db

∗The author can be reached at http://chneukirchen.org.
1More about these techniques, graphics helpful for understanding, and a codeless step-by-

step explanation can be found at http://www.sbc.su.se/∼pjk/molbioinfo2001/dynprog/
dynamic.html.

1

http://chneukirchen.org
http://www.sbc.su.se/~pjk/molbioinfo2001/dynprog/dynamic.html
http://www.sbc.su.se/~pjk/molbioinfo2001/dynprog/dynamic.html

memscore is the array that contains the actual matrix. It is filled using a lazy
stream of scores for each element.

memscore = listArray ((0, 0), (lena, lenb))
[score x y | x ← [0 . . lena], y ← [0 . . lenb]]

The scoring function looks very confusing since Haskell’s array access operator is
not very elegant. I’ll introduce an infix operator i @@ j that corresponds to Mi,j:

infix 5 @@
(@@) i j = memscore ! (i , j)

The score Mi,j of each element is determined in below code as follows, the borders
of the matrix with i = 0 and j = 0 are initialized to zero. (More complex scoring
algorithms could be added easily.)

Mi,j = maximum of


Mi−1,j−1 + Si,j

Mi,j−1 + w
Mi−1,j + w

The gap penalty w is zero here for reasons of simplicity.

score 0 = 0
score 0 = 0
score x y = maximum [(x − 1 @@ y − 1) + difference x y ,

x − 1 @@ y ,
x @@ y − 1]

Si,j is a mismatch penalty defined here like this:

Si,j =

{
0 if the symbols at position i and position j match
1 otherwise

where difference x y | a !! x ≡ b !! y = 1
| otherwise = 0

traceback now finds the path connecting both corners of the matrix and collects
the appropriate symbols (or spaces for gaps).

traceback :: Int → Int → [(Char ,Char)]
traceback 0 0 = []
traceback x y | x ≡ 0 = (’ ’ , b !! y) : traceback 0 (y − 1)

| y ≡ 0 = (a !! x , ’ ’) : traceback (x − 1) 0
| x @@ y ≡ x @@ y − 1 = (’ ’ , b !! y) : traceback x (y − 1)
| x @@ y ≡ x − 1 @@ y = (a !! x , ’ ’) : traceback (x − 1) y
| otherwise = (a !! x , b !! y) : traceback (x − 1) (y − 1)

2

The resulting list of tuples like [(’a’, ’d’), (’b’, ’e’), (’c’, ’f’)] gets converted
by format into ["abc", "def"].

format l = [map fst l ,map snd l]

Finally, a small main program to test the algorithm:

dna1 = "GAATTCAGTTA"

dna2 = "GGATCGA"

main = mapM putStrLn $ align dna1 dna2

Expected output:

G AATTCAGTTA

GGA T C G A

As you can see, corresponding symbols are aligned, with appropriate gaps in be-
tween. Implementing more complex rules for alignment is left as an exercise for
the reader.

A run where bigger gaps are needed:

dna1 = "ATGGCTTCTACC"

dna2 = "TATCAAAAGCCG"

 ATGGCTTCTA CC

TAT C AAAAGCCG

3

