
Introducing Rack
Christian Neukirchen

Editor in Chief of Anarchaia

A Google Image Search
for “ruby rack” reveals:

Overview

• What is Rack?

• Why do we need Rack?

• The design of Rack

• The Rack distribution

• Coset: a RESTful Rack framework

• Real World Rack

What is Rack?

• Rack is a specification (and implementation)
of a minimal abstract Ruby API that models
HTTP

Why do we need Rack?

• Developing a Ruby web framework is
not hard…

• …but it’s lots of repetitive, boring work:

• Again, write interfaces to all the servers!

• Again, write decoding code or copy cgi.rb

The big picture

• Let’s make the simplest possible API that
represents a generic web application

• Write the HTTP interfacing code OAOO*

* once and only once

Designing Rack

• How to do that?

• “type-based design” (*shock*, *shudder*)

HTTP from
a Bird’s-eye view

Request Response

What’s a request?

• classically, a CGI
environment

• Most frameworks
already use
something like it,
most developer
know the fields

• Let’s keep that

{"HTTP_USER_AGENT"=>"curlł/7.12.2 ..."
 "REMOTE_HOST"=>"127.0.0.1",
 "PATH_INFO"=>"/",
 "HTTP_HOST"=>"ruby-lang.org",
 "SERVER_PROTOCOL"=>"HTTP/1.1",
 "SCRIPT_NAME"=>"",
 "REQUEST_PATH"=>"/",
 "REMOTE_ADDR"=>"127.0.0.1",
 "HTTP_VERSION"=>"HTTP/1.1",
 "REQUEST_URI"=>"http://ruby-lang.org/",
 "SERVER_PORT"=>"80",
 "HTTP_PRAGMA"=>"no-cache",
 "QUERY_STRING"=>"",
 "GATEWAY_INTERFACE"=>"CGI/1.1",
 "HTTP_ACCEPT"=>"*/*",
 "REQUEST_METHOD"=>"GET"}

And what’s a response?

• CGI uses stdout. Ugh!

• Let’s look at one

HTTP/1.1 302 Found
Date: Sat, 27 Oct 2007 10:07:53 GMT
Server: Apache/2.0.54 (Debian GNU/Linux)
 mod_ssłlł/2.0.54 OpenSSŁ0.9.7e
Location: http://www.ruby-lang.org/
Content-Length: 209
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC
 "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved here</
a>.
 </p>
</body></html>

Status

Headers

Body

The Response in Ruby

• Duck-types to the rescue, an Array of:

• Status: to_i

• Headers: each { |key, value| }

• Body: each { |chunk| }

How to call it

• Obviously, #call

• This also allows using lambdas as web apps!

To summarize:

• The Rack app gets called with the CGI
environment…

• …and returns an Array of status,
headers and body.

Hello, world!

lambda { |env|
 [200, # Status
 {"Content-Type"=>"text/plain"}, # Headers
 ["Hello, world!"]] # Body
}

Rack at a glance

{"REQUEST PATH"=>"...", headers . . .}

!!
call(env) "" [status, headers, body]

to i

##

each

##

yields

!! !"
!"
!"

each

##

yields

!! !"
!"
!"

[String, String] String

The Rack Distribution, I

• The Rack specification

• including Rack::Lint, which checks the apps

* The <tt>CONTENT_LENGTH</tt>,
if given, must consist of digits only.
assert("Invalid CONTENT_LENGTH: " +
 "#{env["CONTENT_LENGTH"]}") {
 !env.include?("CONTENT_LENGTH") ||
 env["CONTENT_LENGTH"] =~ /\A\d+\z/
}

The Rack Distribution, II

• Handlers

• CGI

• FastCGI

• WEBrick

• Mongrel (also Swiftcore’s evented_mongrel)

• LiteSpeed (trunk only)

Rack::Handler::Mongrel.run app, :Port => 80

The Rack Distribution, III

• Included adapters

• Camping

• 3rd party adapters

• Ramaze

• Merb

• Rails (via Fuzed)

• All adapters are almost trivial

and more: Maveric, Sinatra, …

The Rack Distribution, IV

• Lots of middleware

• Utilities that combine, compose,
aggregate or modify Rack applications

• Middleware is stackable, it’s just a Rack
application itself

• Since Rack applications are just Ruby
objects, they are easy to write

Middleware
HTTP

Middleware 1

Middleware 2

Rack application

HTTP

Middleware

Rack application Rack application

A few selected modules

• Rack::Cascade: Try a request with several
apps, and return the first non-404 result

• Rack::CommonLogger: Make an Apache-like
logfile

• Rack::Lint: Ensure the app obeys the
specification

Rack::Request &
Rack::Response

• They are your friends if you want to write
Rack applications directly
def call(env)
 req = Rack::Request.new(env)
 res = Rack::Response.new

 if req.get?
 res.write "Hello #{req.GET["name"]}"
 elsif req.post?
 file = req.POST["file"]
 FileUtils.cp file[:tempfile].path,
 File.join(UPLOADS, file[:filename]
 res.write "Uploaded."
 end

 res.finish
end

Rack::ShowExceptions

Rack::URLMap

Also can do virtual hosts:

Rack::URLMap.new "/one" => app1,
 "/two" => app2,
 "/one/foo" => app3

Rack::URLMap.new \
 "http://one.example.org/" => app1,
 "http://two.example.org/" => app2,
 "https://example.org/secure" => secureapp

Testing with
Rack::MockRequest

require "rack"
require "test/spec"

describe "The sample application 3 slides ago" do
 it "should reply with a welcome on GET" do

 req = Rack::MockRequest.new(myapp)
 res = req.get("/?name=Euruko")

 res.should.be.ok
 res.should.match /Hello, Euruko/

 end
end

Rack configuration

• If you want to use many utilities, don’t do

• Instead, write

app = Rack::CommonLogger.new(
 Rack::ShowExceptions.new(
 Rack::ShowStatus.new(
 Rack::Lint.new(MyRackApp.new))))

app = MyRackApp.new
app = Rack::Lint.new(app)
app = Rack::ShowStatus.new(app)
app = Rack::ShowExceptions.new(app)
app = Rack::CommonLogger.new(app)

Rack::Builder

app = Rack::Builder.new do
 use Rack::CommonLogger
 use Rack::ShowExceptions
 use Rack::ShowStatus
 use Rack::Lint
 run MyRackApp.new
end

rackup
#!/usr/bin/env rackup

use Rack::CommonLogger
use Rack::ShowExceptions
use Rack::ShowStatus
use Rack::Lint
run MyRackApp.new

$ myrackapp.ru -s mongrel -p 8080

Rackup autodetects CGI or FastCGI environments

Override basic configuration

Coset

• Finally, a small RESTful framework I wrote
for my own

• Supports URI templates and direct HTTP
method support

• As well as dealing with multiple content
types

Coset example
class TimeServer < Coset
 GET "/time{EXT}" do
 now = Time.now
 wants "text/html" do
 res.write "<title>Current time</title>\n"
 res.write "It's now #{now}.\n"
 end
 wants "text/plain" do
 res["Content-Type"] = "text/plain"
 res.write now.to_s + "\n"
 end
 wants "application/json" do
 res["Content-Type"] = "application/json"
 res.write "{\"current_time\": \"#{now}\"}\n"
 end
 end
end

$ curl -i localhost:3333/time
HTTP/1.1 200 OK
Content-Type: text/html

<title>Current time</title>
It's now Sun Nov 04 12:03:18 CET 2007.

$ curl -i localhost:3333/time.txt
HTTP/1.1 200 OK
Content-Type: text/plain

Sun Nov 04 12:03:56 CET 2007

$ curl -i -H "Accept: application/json" \
 localhost:3333/time
HTTP/1.1 200 OK
Content-Type: application/json

{"current_time": "Sun Nov 04 12:05:14 CET 2007"}

Real World Rack

• Personifi uses a custom Rack application to
serve 30 billion(!) requests a month

• Rack allows fast development due to its
lean interface and convenient APIs

Summary
• An abstract interface on top of HTTP

allows for

• code reuse

• easier testing

• new ways of combining
code/applications

• Rack is easy to support

• …and quickly pays off

• Support Rack!

Thanks for your
attention!

• Special thanks to:

• everyone that contributed to Rack (see
AUTHORS and README)

• Personifi for giving access to machines to
do real world testing

• the WSGI team for creating a superb
specification I just needed to adapt

• These slides: http://chneukirchen.org/talks

• You’ll also find a paper on Rack there

• http://rack.rubyforge.org

• #rack @ freenode.net
Thanks to: Horacio López a.k.a. vruz, Johan Sørensen, and Aria Stewart for reviewing the slides.
Verbatim copying is allowed as long as this message is preserved. Duplication is encouraged.

Rack also has been used for high-speed development of
small, but urgently needed web applications. Due to the
simplicity and convenient APIs and helpers provided, we
had working results quicker than with any other Ruby web
framework in existence.

7. A short excursion: Coset
Although Rack is pretty young, some Ruby web frameworks
already depend on Rack and use it as their main interface
(Section 3.3).

We also wrote an framework specifically for implement-
ing RESTful [20] Rack applications and services, called
Coset1.

Coset’s API is inspired by Camping [13], web.py [21]
and RESTlet [22] and features dispatching on URI tem-
plates [23] as well as support dealing with multiple content-
types. A simple time server could be written like this, to
show an example:

require ’coset’

class TimeServer < Coset
GET "/time{EXT}" do
now = Time.now
wants "text/html" do
res.write "<title>Current time</title>\n"
res.write "It’s now #{now}.\n"

end
wants "text/plain" do
res["Content-Type"] = "text/plain"
res.write now.to_s + "\n"

end
wants "application/json" do
res["Content-Type"] = "application/json"
res.write "{\"current_time\": \"#{now}\"}\n"

end
end

end

The special template {EXT} matches an file extension and
“fakes” the according content-type (useful for browsers or in
cases you cannot pass your own headers).

Now, we can test the time server (superfluous headers are
suppressed for reasons of length):

$ curl -i localhost:3333/time
HTTP/1.1 200 OK
Content-Type: text/html

<title>Current time</title>
It’s now Sun Nov 04 12:03:18 CET 2007.

1 Which is a really bad German mathematical pun: Coset can be translated
as Restklasse.

$ curl -i localhost:3333/time.txt
HTTP/1.1 200 OK
Content-Type: text/plain

Sun Nov 04 12:03:56 CET 2007

$ curl -i -H "Accept: application/json" \
localhost:3333/time

HTTP/1.1 200 OK
Content-Type: application/json

"current_time": "Sun Nov 04 12:05:14 CET 2007"

While Coset is not yet officially released due to limited
developer’s time, the Darcs head version [24] already runs
several small sites successfully.

Coset is by no means finished yet, and discussion about
future features as well as design and implementation details
is welcome.

8. Summary
We have shown how a minimal interface abstraction of
HTTP simplifies web development by allowing code reuse,
better testability and higher flexibility of combining code.

The Rack specification, in spite of it’s low version num-
ber, already satisfies the current needs of web developers and
specifies a suitable way to run web applications.

Abstracting HTTP into what essentially is a method ap-
plication enables us to use decades of functional program-
ming for building and combining code for the web.

Our implementation proves that this approach is fast and
stable enough to run business-critical web services without
restrictions in expressivity or performance, but with even
quicker turnaround times than with traditional frameworks,
since the convenient APIs built upon the core Rack specifi-
cation save developer’s valuable time.

Acknowledgments
Thanks go to all developers contributing to the Rack code
base and the project itself—an always current list is found in
the Rack source distribution.

I would like to especially thank Michael Fellinger with
whom I talked for hours pondering and improving the design
of Rack.

Thanks also go to Personifi for allowing me to test and
benchmark Rack on powerful servers with real world appli-
cations. Our results and development times speak for them-
selves.

Last, but not the least, I’d like to thank the WSGI team
for paving the way—they did the major work in solving
the fiddly design issues which appear now and then—and
especially the Paste [25] developers, whose project largely
influenced the design of the Rack utilities.

Finally, thanks to Horacio López a.k.a vruz, Johan Sørensen,
... for reviewing this paper.

5 2007/11/8

