
Gleam: type-safe programming
on the BEAM

Leah Neukirchen <leah@vuxu.org>

Aktiv Symposium München ’23
May 27, 2023

mailto:leah@vuxu.org

Preliminaries

This is meant to be a workshop, so you’re invited to write
some code. To participate, you’ll need one of these:

• A system with Linux/MacOS/WSL and having Erlang and
Gleam installed on your own. Binaries are at
https://github.com/gleam-lang/gleam/releases
Your distribution probably has Erlang.

• A GitHub account and a browser. Open the codespace at
https://github.com/leahneukirchen/gleam-codespace

• A system with Docker and x86_64.
github.com/leahneukirchen/gleam-codespace/blob/
main/.devcontainer/Dockerfile

Leah Neukirchen: Gleam 2/22

https://github.com/gleam-lang/gleam/releases
https://github.com/leahneukirchen/gleam-codespace
github.com/leahneukirchen/gleam-codespace/blob/main/.devcontainer/Dockerfile
github.com/leahneukirchen/gleam-codespace/blob/main/.devcontainer/Dockerfile

What is Gleam?

A strict, functional statically-typed language with multiple
backends:

• Strict means all arguments are evaluated before a call.
• Functional means values are immutable:

• To the extent that Gleam itself does not have any
global state mutation (without using FFI)

• However, functions are not enforced to be pure
• Perhaps there will be an effect system at a later point

• Statically typed means we don’t have null pointer
exceptions or any types: well-typed programs can’t go
wrong!

Leah Neukirchen: Gleam 3/22

Gleam backends

The Gleam compiler targets the following runtimes:

• Erlang BEAM/ERTS (primary target)
• Great support for concurrency, distribution and fault
tolerance

• Uses green threads and the actor model
• Javascript

• Node.js
• Deno
• Browsers

• Perhaps some day a native compiler?

Leah Neukirchen: Gleam 4/22

Show me some code

// comments
"Strings are UTF-8 and have C like escapes\n"
True && False // are booleans

1 + 2 * 4 == 9 // Ints and Floats are disjoint and
1.0 +. 2.5 *. 4.0 >. 9.0 // use different operators

let x = 6 // local variable bindings
[1,2,3] // lists (all elements same type)
[first, ..rest] // cons-syntax
let t = #(42,"foo",True) // tuples (various types)
t.0 == 42

Leah Neukirchen: Gleam 5/22

Blocks

Instead of parentheses, blocks surrounded by curly braces
are used for grouping:

{1 + 2} * 4 == 12

{
let a = 1 + 2
let b = 4
a * b

} == 12

Leah Neukirchen: Gleam 6/22

Types

Gleam features full type inference, i.e. all type annotations
are optional (but will be checked).

let x: Int = 6

Gleam uses a Hindley-Milner type system: bleeding-edge
from the 1960s!

Leah Neukirchen: Gleam 7/22

Pattern matching

case myresult {
Ok(x) -> x
Error(e) -> panic

}
let assert Ok(x) = myresult // single case

case some_bool { // there is no boolean if
True -> "It's true!"
False -> "It's not true."

}

Gleam supports list patterns, string prefix matches, guards, and
matching multiple values at once.

Leah Neukirchen: Gleam 8/22

Functions

fn add(x: Int, y: Int) -> Int {
x + y

}
fn add(x, y) {

x + y
}
fn map(list: List(a), fun: fn(a) -> b, acc: List(b))

-> List(b) {
case list {
[] -> reverse(acc)
[x, ..xs] -> map(xs, fun, [fun(x), ..acc])

}
}

You can use tail-recursion for self calls.Leah Neukirchen: Gleam 9/22

More functions

Functions can have labelled arguments:

pub fn replace(
in string: String,
each pattern: String,
with replacement: String,

) {
// Code with string, pattern, and replacement

}

replace(each: ",", with: " ", in: "A,B,C")

let add_one = add(1, _) // currying
add_one(2)

Leah Neukirchen: Gleam 10/22

The pipe operator

Instead of deeply nesting calls a(b(c(d))), Gleam
supports the pipe operator |>:

d |> c |> b |> a

You can pass additional arguments to the functions:

items
|> list.reverse
|> list.map(fn(arg) { " " <> arg })
|> string_builder.from_strings

Gleam will figure out from the types which argument is to
be used for the pipeline!

Leah Neukirchen: Gleam 11/22

Modules

Every file is a module, determined by its file name.

You need to mark functions to be exported as pub fn.

import unix/cat
import animal/cat as kitty
import animal/cat.{Cat, stroke}

Leah Neukirchen: Gleam 12/22

Custom types

You can define your own algebraic data types:

type User {
LoggedIn(name: String)
Guest

}

Leah Neukirchen: Gleam 13/22

Orthography

Modules, variables, constants and functions are
lowercase_and_snake_case.

Types and their constructors are CamelCase.

This is enforced by the compiler.

Project names (= top level directories) must start with a
lowercase letter and may only contain lowercase letters,
numbers and underscores. Project names cannot start with
gleam_.

Leah Neukirchen: Gleam 14/22

Standard library types

The prelude contains

BitString
Bool
Float
Int
List(element)
Nil
Result(value, error)
String
UtfCodepoint

Leah Neukirchen: Gleam 15/22

The Result type

type Result(value, reason) {
Ok(value)
Error(reason)

}

Haskellers know this as Either.

To Rustaceans this should be familar.

Leah Neukirchen: Gleam 16/22

Use notation

use notation passes the rest of the code of the block as a
function:

Instead of the “pyramid of doom” as in

logger.record_timing(fn() {
database.connect(fn(db) {
file.open("file.txt", fn(f) {
// Do something with `f` here...

})
})

})

Leah Neukirchen: Gleam 17/22

Use notation, cont’d

We can write:

use <- logger.record_timing
use db <- database.connect
use f <- file.open("file.txt")
// Do something with `f` here...

Leah Neukirchen: Gleam 18/22

Topics not covered

• Erlang/JS FFI
• Bit strings

That is pretty much everything you need to learn about the
language!

Gleam favors first-class-functions and data types over
many features other languages have.

https://mckayla.blog/posts/
all-you-need-is-data-and-functions.html

Leah Neukirchen: Gleam 19/22

https://mckayla.blog/posts/all-you-need-is-data-and-functions.html
https://mckayla.blog/posts/all-you-need-is-data-and-functions.html

Tooling

• gleam new creates a new Gleam project
• gleam run compiles and starts the project
• gleam test compiles and runs the tests
• gleam add adds a dependency to a project

• gleam format reformats the code (quite opinionated...)
• gleam fix to apply language syntax changes
• gleam lsp starts the included LSP server

Leah Neukirchen: Gleam 20/22

Caveats

• Some quirks require some Erlang background to
understand.
• e.g. what you can call in an “if”-guard
• string functions and graphemes

• Some things are inconsistent between backends:
• Erlang has big integers, JavaScript only 32-bit
• Erlang has full tail call optimization, JavaScript only for
self-calls

• Type errors result in spurious warnings, which are printed
first, but are often wrong.

• No REPL, but the compiler is quick.

Leah Neukirchen: Gleam 21/22

Questions?

Thank you.

Now let’s hack on something!

