
Certification for µ-Calculus with
Winning Strategies

Martin Hofmann1, Christian Neukirchen1?, and Harald Rueß2

1 Department of Informatics, Ludwig-Maximilians-Universität, München, Germany
2 fortiss, An-Institut Technische Universität München, 80805 München,

Guerickestr. 25, Germany

Abstract. We define memory-efficient certificates for µ-calculus model
checking problems based on the well-known correspondence between µ-
calculus model checking and winning certain parity games. Winning
strategies can be independently checked, in low polynomial time, by ob-
serving that there is no reachable strongly connected component in the
graph of the parity game whose largest priority is odd. Winning strategies
are computed by fixpoint iteration following the naive semantics of µ-
calculus. We instrument the usual fixpoint iteration of µ-calculus model
checking so that it produces evidence in the form of a winning strategy;
for a formula φ with fixed alternation depth, these winning strategies can
be computed in polynomial time in |S| and in space O(|S|2|φ|2), where
|S| is the size of the state space and |φ| the length of the formula φ.
On the technical level our work yields a new, simpler, and immediate
constructive proof of the correspondence between µ-calculus and par-
ity games. A prototypical implementation of a µ-calculus model checker
generating these certificates has been developed.

1 Introduction

We address the problems (1) of constructing concise certificates for µ-calculus
model checking problems, and (2) for efficiently and independently checking
these certificates by means of a trustworthy checker. Our main result here is
an effective and low overhead instrumentation of the usual fixpoint iteration of
µ-calculus model checking [3] for generating certificates that are independently
checkable in low polynomial time.

There are a number of results and algorithms for constructing witnesses and
counterexamples of various forms for different sublogics, including LTL, ACTL,
CTL, CTL∗, or the µ-calculus [7, 1, 24, 33, 6, 27, 14, 34]. For example, for linear
temporal logic (LTL) restricted to the temporal operators F, U and X, a positive
certificate can be given by a finite path. Model checkers for CTL∗ (for example,
SMV) are capable of generating counterexamples[7] in the form of a lasso; that
is, infinite sequences of states s0, . . . , si, (si+1, . . . , sk)ω which end up repeat-
ing periodically after some prefix of length i. Whereas lasso-shaped sequences

? The author was supported by DFG Graduiertenkolleg 1480 (PUMA).

refute properties assumed for all possible paths, they fail, for example, in falsi-
fying conjectured existence of certain paths. Witnesses for full CTL have been
proposed by Shankar and Sorea [27, 29]. These results are based on a symbolic
representation of witnesses that enables the extraction of explicit witnesses (and
counterexamples) for full CTL model checking.

Local model checking procedures for determining whether finite-state systems
have properties expressible in the µ-calculus incrementally construct tableau
proofs [35, 31, 8]. These tableaux can be proof-checked independently, but the
size of the constructed tableaux may grow exponentially in the number of states
of the underlying transition system. Based on the tableau method of local µ-
calculus model checking, Kick [18] proposes an optimized construction by iden-
tifying isomorphic subproofs. Namjoshi [20] introduces the notion of a certifying
model checker that can generate independently checkable witnesses for proper-
ties verified by a model checker. He defines witnesses for properties of labelled
transition systems expressed in the µ-calculus based on parity games over al-
ternating tree automata. These developments rely on µ-calculus signatures [32]
for termination, and are also based on the correspondence between µ-calculus
model checking with winning parity games [12].

The developments in this paper can certify full µ-calculus model checking
problems. Moreover, in order to certify that a given formula does not hold for
some state, the result of checking the dual formula (cf. Lemma 1) is certified in-
stead. In this way, certificates of the dual formula may be regarded as generalized
counterexamples of the original formula.

Our approach of instrumenting µ-calculus model checking fixpoint iteration
with the computation of witnesses, including the underlying notion and algebra
of partial winning strategies, is novel. Moreover, in contrast to the previous work
on local µ-calculus model checking, the witnesses generated by our global model
checking algorithm are rather space-efficient, as they can be represented in space
in O(|S|2|φ|2), where |S| is the size of the state space and |φ| is the length of the
formula φ.

Our constructions build on the well-known equivalence of model checking for
the µ-calculus with winning corresponding parity games [12, 34, 13]. Because of
the determinacy of parity games (see [19]), players of these games may restrict
themselves to considering memoryless strategies only. In particular, there are no
draws and exactly one of the players has a winning strategy for each vertex of
the game graph. Algorithms for generating witnesses for players of parity games
and their complexity are described by Jurdziński [17].

On the technical level our work can be seen as a new, simpler, and imme-
diately constructive proof of the correspondence between µ-calculus and parity
games. Winning strategies are computed by fixpoint iteration following the naive
semantics of µ-calculus. No complex auxiliary devices such as signatures [32] or
alternating automata [12] are needed. It should be possible to instrument ex-
isting implementations (such as the one integrated in the PVS theorem prover
[23]) of µ-calculus based on fixpoint iteration to generate these certificates.

Roadmap. This paper is structured as follows. In Sections 2 and 3 we summa-
rize some standard developments for the µ-calculus in order to keep the paper
self-contained. Section 3 also contains a low polynomial-time checker for certifi-
cates which is inspired by the standard algorithm for checking for nonemptiness
of Streett automata. Section 4 elaborates the correspondence between µ-calculus
and winning parity games and in particular contains a new constructive proof of
the correspondence (Theorem 2). Section 5 provides the technical details, first,
of the central notion of partial winning strategies, and, second, for instrumenting
the usual µ-calculus fixpoint iteration with the computation of partial winning
strategies. For ease of exposition of this algorithm, we choose systems of equa-
tions as an alternative representation of µ-calculus formulas. The corresponding
implementation of a witness-generating µ-calculus model checker is presented in
Section 6, and the feasibility of our approach is demonstrated by means of se-
lected benchmark examples. Concluding remarks, including further applications
of our technical results on witness-generation and -checking, are presented in
Section 7.

An earlier version of this paper, without implementation and the use of equa-
tion systems, has been presented at the VeriSure 2013 workshop (associated with
CAV 2013) [16].

2 Syntax and Semantics

We assume variables X ∈ X , propositions p ∈ P, and actions a ∈ A.

2.1 µ-Calculus Formulas

Definition 1. The set of µ-calculus formulas is given by the grammar

φ ::= X | p | ¬p | 〈a〉φ | [a]φ | φ1 ∧ φ2 | φ1 ∨ φ2 | µX. φ | νX. φ

The set of free variables FV (φ) ⊆ X , the size |φ| of a formula, and the substitu-
tion φ[Z := ψ] of formula ψ for any free occurrence Z ∈ FV (φ) are defined in the
usual way. Note that negation is allowed for propositions only, hence all syntac-
tically valid formulas are monotonic in their free variables and no considerations
of polarity need to be taken into account.

The notations Q ∈ {µ, ν}, M ∈ {[a], 〈a〉 | a ∈ A}, ∗ ∈ {∧,∨} are used to
simplify inductive definitions.

The semantics of µ-calculus formulas is given in terms of labelled transition
systems (LTS), consisting of a nonempty set of states S, and a family of left-

total3 relations
a−→ ∈ S×S for each action a ∈ A and, finally, an assignment

T ∈ S → 2P which tells for each state s which atomic propositions p ∈ P are
true in that state. If T is an LTS, we use S(T) for its set of states;

a−→T or

simply
a−→ for its transition relation and T itself for its interpretation of atomic

propositions.

3 left-total means for all s ∈ S there exists s′ ∈ S with s→ s′.

JXKη = η(X)

JpKη = {s | p ∈ T (s)} J¬pKη = {s | p /∈ T (s)}
Jφ1 ∨ φ2Kη = Jφ1Kη ∪ Jφ2Kη Jφ1 ∧ φ2Kη = Jφ1Kη ∩ Jφ2Kη

J〈a〉φKη = pre(
a−→)(JφKη) J[a]φKη = p̃re(

a−→)(JφKη)

JµX.φKη = lfp(U 7→ JφKη[X := U]) JνX.φKη = gfp(U 7→ JφKη[X := U])

Fig. 1: Set semantics of µ-calculus formulas.

Fix a transition system T and put S = S(T). For η a finite partial function
from X to 2S with FV (φ) ⊆ dom(η) we define JφKη ⊆ S as in Figure 1.

The sets pre(
a−→)(JφKη) and p̃re(

a−→)(JφKη) respectively denote the preimage
and the weakest precondition of the set JφKη with respect to the binary relation
a−→; formally:

s ∈ pre(
a−→)(JφKη) iff ∃t ∈ S. s a−→ t and t ∈ JφKη

s ∈ p̃re(
a−→)(JφKη) iff ∀t ∈ S. s a−→ t implies t ∈ JφKη

Given the functional F (U) = JφKη[X := U], lfp(F) and gfp(F) respectively
denote the least and the greatest fixpoints of F , with respect to the subset
ordering on 2S . By Knaster-Tarski, these fixpoints exist, since F is monotone.

Proposition 1. JQX.φKη = Jφ[X := QX.φ]Kη.

By the monotonicity of F , ∅ ⊆ F (∅) ⊆ F 2(∅) ⊆ . . . and S ⊇ F (S) ⊇ F 2(S) ⊇
Moreover, if S is finite then we have

JµX.φKη = {s ∈ S | ∃t ≤ |S|. s ∈ F t(∅)},
JνX.φKη = {s ∈ S | ∀t ≤ |S|. s ∈ F t(S)}.

Therefore, in case S is finite, the iterative algorithm in Figure 2 computes JφKη.

Proposition 2. JφKη = sem(φ, η).

Lemma 1. s 6∈ JφKη iff s ∈ Jφ∗Kη′, where η′(X) = S\η(X) and φ∗ is the dual
of φ given by

(X)∗ = X

(p)∗ = ¬p (¬p)∗ = p

(φ1 ∧ φ2)∗ = φ∗1 ∨ φ∗2 (φ1 ∨ φ2)∗ = φ∗1 ∧ φ∗2
([a]φ)∗ = 〈a〉φ∗ (〈a〉φ)∗ = [a]φ∗

(µX.φ)∗ = νX.φ∗ (νX.φ)∗ = µX.φ∗

sem(X, η) = η(X)

sem(p, η) = T (p)

sem(¬p, η) = S \ T (p)

sem(µX.φ, η) = iterX(φ, η, ∅)
sem(νX.φ, η) = iterX(φ, η, S)

sem(φ1 ∧ φ2, η) = sem(φ1, η) ∩ sem(φ2, η)

sem(φ1 ∨ φ2, η) = sem(φ1, η) ∪ sem(φ2, η)

sem([a]φ, η) = p̃re(
a−→)(sem(φ, η))

sem(〈a〉φ, η) = pre(
a−→)(sem(φ, η))

iterX(φ, η, U) = if U = U ′ then U else iterX(φ, η, U ′)

where U ′ := sem(φ, η[X := U])

Fig. 2: Fixpoint iteration for computing the semantics of µ-calculus formulas.

2.2 Ordered Systems of Equations

We now use an alternate representation of µ-calculus formulas considering them
to be an ordered system of equations [26]. Under this point of view, a formula
φ is represented by a set of equations (X = φX)X∈X , with one formula φX for
each variable X occurring in φ, together with a strict partial order of variables
� ⊆ X × X .

To do this, we assume that every fixpoint quantifier binds a different variable;
if needed this can be ensured by α-renaming. For example, we replace µX.X ∧
νX.X with µX.X ∧ νY.Y . For each variable X we denote qX ∈ {µ, ν} the kind
of quantifier that it stems from.

We then replace each fixpoint formula by the (unique) variable it introduces
and thereafter give for each fixpoint formula a defining equation. Formally, for
any subformula ψ of φ let ψ̂ denote the formula obtained by replacing each
fixpoint subformula by the variable it binds. The equation system then contains
one equation X = ψ̂ for each fixpoint subformula QX.ψ, with qX = Q.

In parallel, we build the strict partial order � of variables. For each variable
X bound by a fixpoint subformula QX.ψ and each variable Y bound by a fixpoint
subformula of ψ, i.e. all Y bound below X, we set X � Y .

For example let

φ := νZ.(b ∨ (µX.X ∨ [a]Z)) ∧ [a]Z

We have φ̂ = (b ∨ (µX.X ∨ [a]Z)) ∧ [a]Z = (b ∨X) ∧ [a]Z so the equations are

Z = (b ∨X) ∧ [a]Z (i)

X = X ∨ [a]Z (ii)

Moreover, qZ = ν, qX = µ, and Z � X.

The order � is relevant for the restoration of the original formula: had we
instead set X � Z, we would retrieve

µX.X ∨ [a](νZ.(b ∨X) ∧ [a]Z).

It is now clear that such systems of equations together with � are in 1-1 corre-
spondence with formulas.

In case the formula does not start with a quantifier, a fresh variable needs to
be introduced and bound to the formula in the first place. Since this variable is
not used anywhere else, either µ or ν can be chosen.

This representation is advantageous for our implementation as it avoids the
need for syntactic substitution of fixpoint formulas for their variables.

We extend J−Kη to formulas ψ appearing in a given equation system ac-
cording to the following clause, under the condition that {X | X � Y, Y ∈
FV (ψ) } ⊆ dom(η), i.e. all variables of higher priority reachable from the right
hand side of the equation are already bound in η.

JXKη =

{
lfp(U 7→ JφXKη[X:=U]) if X 6∈ dom(η) and qX = µ

gfp(U 7→ JφXKη[X:=U]) if X 6∈ dom(η) and qX = ν

In particular, the following is then obvious, starting from an empty environment:

Lemma 2. Let φ be a formula and let X be the toplevel variable of the repre-
sentation of φ as an equation system. Then JXK = JφK.

Remark It is possible to extend the semantics to the case where the relations
a−→ are not necessarily total: The semantics carries over without changes.

The restriction to total relations is a standard one and it is vindicated by
the following translation from the general case to the one treated here:

Given a LTS T with a not necessarily total
a−→ we build a new LTS T ′ with

an additional distinguished state, S(T ′) = S(T) ∪ {f}, then extend
a−→ with

extra edges from any state to f (
a−→T ′ =

a−→T ∪ { (s,f) | s ∈ S(T ′) }) so that
a−→T ′ now is total. We also add a proposition pf which is true at state f and

nowhere else.

We can now define a translation φ̂ for formulas by setting

〈̂a〉φ =〈a〉¬pf ∧ φ̂ [̂a]φ =[a]pf ∨ φ̂.

The translation is homomorphically extended to all other connectives. It is
then easy to see that ∀s ∈ S(T) : s ∈ JφKT ⇐⇒ s ∈ Jφ̂KT ′ .

3 Parity Games

A parity game is given by the following data:

– a (finite or infinite) set of positions Pos partitioned into proponent’s (Player
0) and opponent’s (Player 1) positions: Pos = Pos0 + Pos1;

– a left-total edge relation → ⊆ Pos×Pos;
– a function Ω ∈ Pos → N with a finite range; we call Ω(p) the priority of

position p.

The players move a token along the edge relation →. When the token is on a
position in Pos0 then proponent decides where to move next and likewise for
opponent.

In order to formalize the notion of “to decide” we must introduce strategies.
Formally, a strategy for a player i ∈ {0, 1} is a function σ that for any nonempty
string ~p = p(0) . . . p(n) over Pos such that p(k) → p(k + 1) for k = 0 . . . n − 1
and p(n) ∈ Posi associates a position σ(~p) ∈ Pos such that p(n)→ σ(~p).

Given a starting position p and strategies σ0 and σ1 for the two players one
then obtains an infinite sequence of positions (a “play”) p(0), p(1), p(2), . . . by

p(0) = p

p(n+ 1) = σi(p(0) . . . p(n)) where p(n) ∈ Posi

We denote this sequence by play(p, σ0, σ1).
The play is won by proponent (Player 0) if the largest number that occurs

infinitely often in the sequence Ω(play(p, σ0, σ1)) is even and it is won by oppo-
nent if that number is odd. Note that Ω(−) is applied component-wise and that
a largest priority indeed exists since Ω has finite range.

Player i wins from position p if there exists a strategy σi for Player i such
that for all strategies σ1−i of the other player (Player 1 − i) Player i wins
play(p, σ0, σ1). We write Wi for the set of positions from which Player i wins.

A strategy σ is positional if σ(p(0) . . . p(n)) only depends on p(n). Player i
wins positionally from p when the above strategy σi can be chosen to be posi-
tional.

The following is a standard result [19].

Theorem 1. Every position p is either in W0 or in W1 and Player i wins po-
sitionally from every position in Wi.

Example 1. Fig. 3 contains a graphical display of a parity game. Positions in
Pos0 and Pos1 are represented as circles and boxes, respectively, and labelled
with their priorities. Formally, Pos = {a, b, c, d, e, f, g, h, i}; Pos0 = {b, d, f, h};
Pos1 = {a, c, e, g, i}; Ω(a) = 3, . . . , and → = {(a, b), (b, f), . . . }.

In the right half of Fig. 3 the winning sets are indicated and corresponding
positional winning strategies are given as fat arrows. The moves from positions
that are not in the respective winning set are omitted but can of course be
filled-in in an arbitrary fashion.

3 1 0

3214

4

f g h i

dc

e

ba

3

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

3 1 0

3214

4

a b c d

h igf

e

W W1

3

0

Fig. 3: A parity game and its decomposition into winning sets.

3.1 Certification of Winning Strategies

Given a parity game with finitely many positions, presented explicitly as a finite
labelled graph, and a partition of Pos into V0 and V1 we are now looking for an
easy-to-verify certificate as to the fact that V0 = W0 and V1 = W1.

In essence, such a certificate will consist of a positional strategy σi for each
Player i such that i wins using σi from every position p in Vi. Clearly, this implies
Vi = Wi and the above theorem asserts that in principle such certificates always
exist when Vi = Wi. However, it remains to explain how we can check that a
given positional strategy σi wins from a given position p.

We first note that for this it is enough that it wins against any adversarial
positional strategy because the “optimal” counterstrategy, i.e., the one that wins
from all adversarial winning positions is positional (by Theorem 1). Thus, given
a positional strategy σi for Player i we can remove all edges from positions
p′ ∈ Posi that are not chosen by the strategy and in the remaining game graph
look for a cycle whose largest priority has parity 1− i and is reachable from p. If
there is such a cycle then the strategy was not good and otherwise it is indeed
a winning strategy for Player i.

Naive enumeration of all cycles in the graph will result in having to check
exponentially many cycles in the worst-case. However, the check can be per-
formed in polynomial time [17], using the standard algorithm for nonemptiness
of Streett automata [2] of which the problem at hand is actually an instance. This
algorithm uses a decomposition of the graph into nontrivial strongly connected
components (SCC).

If every reachable SCC only has positions whose priority has parity i then
obviously the strategy is good for Player i. Next, if there is a reachable SCC
where the highest priority has parity 1−i, the strategy is bad, since this particular
position can be reached infinitely often.

Otherwise, the highest priority in each SCC has parity i and of course player
1−i can win only if it is possible for them to avoid those nodes. Thus, we remove
those nodes and decompose the resulting graph in SCCs again and start over.

For our implementation, we use a variant of this algorithm based on Dijkstra’s
algorithm for SCC as presented by [10, 9]. In contrast to other efficient algorithms
for this problem (such as [15]), it has the benefit of being on-the-fly and does

not require precomputation of the parity game graph. The checking algorithm
is described in more detail in Section 6.

Example 2. After removing the edges not taken by Player 0 according to their
purported winning strategy we obtain the following graph:

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

3 1 0

3214

4

a b c d

h igf

e

W W1

3

0

We see that the two reachable SCC from W0 are {a, b, f} and {g, h}. The
first one contains the cycles a, f and a, b, f which both have largest priority 4.
The other one is itself a cycle with largest priority 2.

Likewise, adopting the viewpoint of Player 1, after removing the edges not
taken by their strategy we obtain

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

3 1 0

3214

4

a b c d

h igf

e

W W1

3

0

and find the reachable (from W1) SCCs to be {c, d, i}. The only cycles therein
are d, e and d, e, i. Both are good for Player 1.

4 Game-theoretic Characterization of µ-Calculus

Fix an LTS T and a µ-calculus formula φ. We first translate φ into an equation
system (as explained in Section 2.2) over the variables X written as X = φX
where X ∈ X and qX ∈ {µ, ν}.

We also fix a function Ω : X → N such that

– qX = µ⇒ Ω(X) odd;
– qX = ν ⇒ Ω(X) even;
– X � Y ⇒ Ω(X) > Ω(Y)

If in addition η is an environment with dom(η) ⊆ X we define the game
G(T, φ, η) as follows:

Positions are pairs (s, ψ) where s ∈ S and ψ is a subformula of the right-
hand sides of the equation system and FV (ψ) ⊆ dom(η). In positions of the
form (s, ψ) where ψ starts with ∨ or 〈a〉, it is proponent’s (Player 0) turn. The
possible moves for proponent to choose from are:

(s, ψ1 ∨ ψ2) (s, ψ1)

(s, ψ1 ∨ ψ2) (s, ψ2)

(s, 〈a〉ψ) (t, ψ) where s
a−→T t.

In positions of the form (s, ψ) where ψ starts with ∧ or [a] it is the opponent’s
turn. The possible moves for opponent to choose from are:

(s, ψ1 ∧ ψ2) (s, ψ1)

(s, ψ1 ∧ ψ2) (s, ψ2)

(s, [a]ψ) (t, ψ) where s
a−→T t.

From all other positions there is exactly one move so it does not matter to which
player they belong. We fix them to be proponent’s positions for definiteness.
These unique moves are:

(s,X) (s, φX) when X /∈ dom(η)

(s,X) (s,X) when X ∈ dom(η)

(s, p) (s, p)

(s,¬p) (s,¬p)

The priorities Ω(s, φ) on these positions are defined as follows:

Ω(s, p) =

{
0 if p ∈ T (s)

1 if p /∈ T (s)

Ω(s,¬p) =

{
1 if p ∈ T (s)

0 if p /∈ T (s)

Ω(s,X) =

Ω(X) if X /∈ dom(η)

0 if s ∈ η(X)

1 if s /∈ η(X)

Ω(s, φ) = 0 otherwise

The cases for predicates p, ¬p and concrete sets X, i.e., where X ∈ dom(η) are
clear. They are winning positions iff the associated state s satisfies the corre-
sponding predicate.

The variables X 6∈ dom(η) on the other hand are understood as abbreviations
of the fixpoint formula they represent. Upon reaching such a position the fixpoint
is unrolled and such unrolling is signalled by the priority Ω(X).

Example 3. Let φ = µX. p∨ 〈a〉X which asserts that a state where p is true can
be reached.

Define the transition system T by S(T) = {s, t} and T (s) = ∅ and T (t) = {p}
and

a−→T = { (s, s), (s, t), (t, t) }. The associated game graph is as follows:

s,X

t,X

s, p ∨ 〈a〉X

t, p ∨ 〈a〉X

s, p

t, p

s, 〈a〉X t, 〈a〉X

The priorities of the positions labelled (s,X), (t,X), (s, p) are 1; the priorities
of the four other positions are 0.

Player 0 wins from every position except (s, p). The winning strategy moves
to (s, 〈a〉X) and then (t,X) and then (t, p). Note that a strategy that moves
from (s, 〈a〉X) to (s,X) loses even though it never leaves the winning set W0.
Thus, in order to compute winning strategies it is not enough to choose any
move that remains in the winning set.

Theorem 2. Fix a formula φ0 and an environment η.
If s ∈ Jφ0Kη then proponent wins G(T, η) from (s, φ0).

Before proving this, we note that the converse is in this case actually a relatively
simple consequence.

Corollary 1. If proponent wins G(T, η) from (s, φ) then s ∈ JφKη.

Proof. Suppose that proponent wins G(T, η) from (s, φ) and s 6∈ JφKη. We then
have s ∈ Jφ∗Kη′ using Lemma 1 for the formal dualisation for formulas and com-
plementation for environments. Thus, by the theorem, proponent wins G(T, η′)
from (s, φ∗). However, it is easy to see that a winning strategy for proponent
in G(T, η′) from (s, φ∗) is tantamount to a winning strategy for opponent in
G(T, η) from (s, φ); so we get a contradiction using Theorem 1. ut

Proof (of Theorem 2). The proof of Theorem 2 now works by structural in-
duction on the equation system generated by φ0. We note that this induction
preserves the invariant {X | X � Y, Y ∈ FV (φ) } ⊆ dom(η), such that JφKη is
always well-defined.

For a variable X, there are three cases, the latter ones are the interesting
ones, as X denotes a fixpoint there:

(i) X ∈ dom(η), then obviously G(T, η) agrees with JXKη.

(ii) X /∈ dom(η) and qX = µ. Then we define

U := { t | proponent wins G(T, η) from (t,X) }.

We must show that JφXKη ⊆ U . By definition of JφXKη it suffices to show that
JφXKη[X 7→ U] ⊆ U . Thus, suppose that t ∈ JφXKη[X 7→ U]. By the induction
hypothesis this means that proponent wins G(T, η[X 7→ U]) from (t, φX). (Now
η(X) is bound while recursing the subformulas of lower priority, preserving the
condition on η.)

Call the corresponding winning strategy σ. We should prove that proponent
also wins from (t,X). We move to (t, φX) and then play according to σ. If we
never reach a position (t′, X), then by the definition of G(T, η[X 7→ U]) we
actually have won G(T, η).

The first time, if ever, that we reach a position (t′, X), we know by the
definition of U that t′ ∈ U and therefore we win G(T, η) from (t′, X), so we
abandon σ and continue play according to the strategy embodied in the latter
statement. This then ensures winning from (t,X) since finite prefixes do not
affect the winning condition.

(iii) X /∈ dom(η) and qX = ν. Let U := JXKη (= JνX.φXKη). We define a
winning strategy for positions of the form (t,X) where t ∈ U as follows. First,
we move (forcedly) to (t, φX). We know that t ∈ JφXKη[X 7→ U] by unwinding
so that, inductively, we have a strategy that allows us to either win right away,
or move to another position (t′, X) where t′ ∈ U and all priorities encountered
on the way are smaller than the one of X due to the definition of priorities, and
since all higher occurring priorities are bound in η, thus not resulting in a loop.

We start over and unless we eventually do win right away at some point we
would have seen the priority of X itself infinitely often which is the largest and
even. ut

We remark that while the previous result is well-known the proof presented here
is quite different from the ones in the standard literature, e.g. [4], which use the
order-theoretic concept of signatures, also known as rankings. Those proofs are
less compositional than ours, in the sense that they do not proceed directly by
structural induction on formulas but rather on the global development of all the
fixpoints.

It is essentially this new compositional proof which allows us to instrument
the usual fixpoint iteration so as to compute winning strategies alongside as we
now detail.

5 Computing Winning Strategies via Fixpoint Iteration

5.1 Fixpoint Iteration

It is well-known that the fixpoint iteration in Figure 2 computes JφKη in the
finite case. Our goal is to somehow instrument this algorithm so that it produces
evidence in the form of a winning strategy. In instrumenting this algorithm to

produce evidence in the form of a winning strategy it is not enough to simply
compute the winning sets using sem(−,−) and then simply choose moves that
do not leave the winning set. This is because of examples like 3 which show that
a strategy that never leaves the winning set may nonetheless be losing.

Instead we will use the construction from the proof of Theorem 2. Some care
needs to be taken with the exact setup of the input and output data formats;
in particular, our algorithm will return partial winning strategies (that win on
a subset of the whole winning set) but only require sets of states (rather than
partial winning strategies) as the values of free variables.

5.2 Partial Winning Strategies

A partial winning strategy is a partial function Σ mapping positions of the game
G(T, η) to elements of S extended with {1, 2, ∗}; it must satisfy the following
conditions:

STAR If Σ(φ, s) = ∗ then all immediate successors of (φ, s) are in dom(Σ);
OR If Σ(φ, s) = i ∈ {1, 2} then φ is of the form φ1 ∨ φ2 and (φi, s) ∈ dom(Σ);

DIA If Σ(φ, s) = s′ ∈ S then φ is of the form 〈a〉ψ and s
a−→ s′ and (ψ, s′) ∈

dom(Σ).
WIN Player 0 wins from all the positions in dom(Σ) and the obvious strategy

induced by Σ is a winning strategy for Player 0 from those positions.

Note that the empty function (denoted {}) is in particular a partial winning
strategy. To illustrate the notation we describe a (partial) winning strategy for
the entire winning set for Example 3:

Σ(φ, s) = ∗ Σ(φ, t) = ∗
Σ(P ∨ 〈a〉φ, s) = 2 Σ(P ∨ 〈a〉φ, t) = 1

Σ(〈a〉φ, s) = t Σ(P, t) = ∗ , and undefined elsewhere.

So, dom(Σ) = {(φ, s), . . . , (P, t)} and, indeed, Player 0 wins from all these posi-
tions by following the advice given by Σ. Of course, Σ′(P, t) = ∗ and undefined
elsewhere is also a partial winning strategy albeit with smaller domain of defi-
nition.

Updating of winning strategies. Suppose that Σ and Σ′ are partial winning
strategies. A new partial winning strategy Σ +Σ′ with dom(Σ +Σ′) is defined
by

(Σ +Σ′)(φ, s) = if (φ, s) ∈ dom(Σ) then Σ(φ, s) else Σ′(φ, s).

Lemma 3. Σ+Σ′ is a partial winning strategy and dom(Σ+Σ′) = dom(Σ)∪
dom(Σ′)

Proof. A play following Σ + Σ′ will eventually remain in one of Σ or Σ′; this,
together with the fact that initial segments do not affect the outcome of a game
implies the claim. ut

5.3 Computing Winning Strategies by Fixpoint Iteration

For any LTS T , formula φ and environment η with dom(η) ⊇ FV (φ) we define
a partial winning strategy sem(φ)η by the following clauses:

sem(X)η = { (X, s) 7→ ∗ | s ∈ η(X) } if X ∈ dom(η)

sem(p)η = { (p, s) 7→ ∗ | p ∈ T (s) }
sem(¬p)η = { (p, s) 7→ ∗ | p /∈ T (s) }

sem(φ ∧ ψ)η = sem(φ)η + sem(ψ)η

+ { (φ ∧ ψ, s) 7→ ∗ | (φ, s) ∈ dom(sem(φ)η)

∧ (ψ, s) ∈ dom(sem(ψ)η) }
sem(φ ∨ ψ)η = sem(φ)η + sem(ψ)η

+ { (φ ∨ ψ, s) 7→ 1 | (φ, s) ∈ dom(sem(φ)η) }
+ { (φ ∨ ψ, s) 7→ 2 | (ψ, s) ∈ dom(sem(ψ)η) }

sem([a]φ)η = sem(φ)η

+ { ([a]φ, s) 7→ ∗ | (φ, s) ∈ dom(sem(φ)η) }
sem(〈a〉φ)η = sem(φ)η

+ { (〈a〉φ, s) 7→ s′ | s a−→ s′ ∧ (φ, s′) ∈ dom(sem(φ)η) }

sem(X = φX)η = shift(νX.φX , sem(φX)η[X:=sem(φX ,η)]) if qX = ν

sem(X = φX)η = shift(µX.φX , iterX(φX , η, {})) if qX = µ

iterX(φ, η,Σ) = let Σ′ := sem(φ)η[X:={s | (φ,s)∈dom(Σ)}] in

if dom(Σ) = dom(Σ′) then Σ else iterX(φ, η,Σ′)

shift(QX.φ,Σ) = Σ + { (QX.φ, s) 7→ ∗ | (φ, s) ∈ dom(Σ) }

Of particular interest is the shift function: since the only possible moves for
QX.φ formulas are to move to the subformula φ, we need to adjust the domain
of the winning strategy under construction to only allow this move when the
strategy will win for the subformula already.

Note how the fixpoint iteration in iterX stops when the domain of the partial
winning strategy does not change anymore. Since the greatest fixpoint for νX.φ
cannot be calculated from above in terms of winning strategies (which can only
grow according to our definitions), the winning set (and thus, domain of the
winning strategy) is computed using the set semantics sem(−,−) instead.

The following Lemma and Theorem are now immediate from these definitions
and Lemma 3.

Lemma 4. { s | (φ, s) ∈ dom(sem(φ)η) } = JφKη

Theorem 3. sem(φ)η is a winning strategy for G(T, φ, η).

Proposition 3. Given a formula φ with fixed alternation depth, sem(φ)η can
be computed in polynomial time in |S| and in space O(|S|2|φ|2), where |S| is the
size of the state space and |φ| the length of the formula φ.

Proof. The computation of sem(φ)η follows the one of JφKη hence the time
bound. Just like in the usual implementations of fixpoint iteration one only
needs to remember the result of the last iteration. Storing a single partial win-
ning strategy requires space O(|S|2|φ|) (associating at most one state to each
pair of state and subformula) and the recursion stack during traversal of subfor-
mulas is limited by |φ| thus requiring us to store O(φ) partial winning strategies
at any one time. This yields the announced space bound. ut

6 Implementation and Evaluation

We have developed an implementation [22] of both computation and checking
of certificates in OCaml. Winning strategies are kept abstract, only exposing
an assoc function to look up a possible move given a model and particular
state. Computation of winning strategies happens by fixpoint iteration using a
recursive function, just like presented in section 5.3.

Two algorithms for checking certificates are implemented: “Check”, a naive,
recursive one with worst-case exponential time, and “Check SCC”, a more intri-
cate one using strongly-connected components to detect cycles. Both algorithms
operate on-the-fly and do not need to pre-compute or even keep the parity game
graph in memory.

The algorithm “Check SCC” is a variant of Dijkstra’s algorithm for detecting
strongly connected components and can be found in [10, 9].

This algorithm works as follows [25]: During a depth-first search of the graph,
we keep a stack of strongly connected components that have been found. Upon
finding an edge back into a SCC that closes a cycle, we merge all SCC that are
part of the cycle, since using the cycle we can now move from every SCC into
any other, i.e. their union is actually one SCC.

We provide three benchmarks that give insight into the algorithms at work.
The “Flower” benchmark is a parity game (from [5]) translated into a µ-

calculus formula, which shows the exponential runtime of fixpoint iteration for
µ-calculus. However, the certificates can be checked in polynomial time.

The “Circle” benchmark measures the overhead of the algorithms. It consists
of a single cycle that needs to be traversed to check for a reachability property.
In this case, runtime is linear, and checking is very fast.

The “Braid” benchmark focuses on checking complexity. This family of graphs
has exponentially many cycles, thus the simple checker requires exponential time.
The SCC algorithm is not affected and checks these strategies in linear time.

7 Conclusion

Our main result is an effective and low overhead instrumentation of the usual
fixpoint iteration of µ-calculus model checking [3] for generating certificates or

Table 1: Runtimes on a AMD Phenom II X4 920 (2.80 GHz)

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Flower 8 16 0.179 0.203 0.009 0.040
Flower 10 20 3.166 1.960 0.071 0.419
Flower 12 24 32.269 11.688 0.287 2.061
Flower 14 28 320.931 61.733 1.298 10.829
Flower 16 32 3196.043 326.666 6.131 58.871

Circle 100 100 0.003 0.001 0.001 0.001
Circle 1000 1000 0.109 0.018 0.005 0.006

Circle 10000 10000 15.763 3.398 0.054 0.057
Circle 100000 100000 2027.584 811.041 0.581 0.582

Braid 6 12 0.001 0.005 1.282 0.009
Braid 8 16 0.002 0.003 31.062 0.013

Braid 10 20 0.002 0.006 711.002 0.020
Braid 100 200 0.663 0.993 — 3.674

counterexamples that are independently checkable in low polynomial time. The
notion of partial winning strategies is central to our developments and also seems
to be novel.

We have implemented our witness-generating algorithms and demonstrated
the feasibility of our approach by means of a collection of benchmark examples.
For simple formulas, manual inspection of the generated certificates yields coun-
terexamples similar to those generated by SMV, but algorithmic approaches for
extracting explicit counterexamples in general needs further investigation.

There are numerous applications for our certifying µ-calculus model checker.
In particular, it should be possible to generate checkable certificates for the
bisimulation between programs and for model checking problems for both linear
time temporal logics and computation tree logics [11] as the basis for assurance
cases and certification arguments for safety-critical systems. Moreover, certifi-
cates for µ-calculus model checking might also be used as the basis of symmet-
ric abstraction-refinement-based model checking engines for the full µ-calculus
based on refining over-approximations using spurious counterexamples and re-
laxing under-approximations using dubious witnesses along the lines of [29, 30],
for sending code together with proofs of arbitrary safety and liveness properties
properties, which are then checked by code consumers according to the proof-
carrying code paradigm of [21], and for synthesizing correct-by-construction con-
trollers from these certificates [30].

Our developments may also form the underpinning for a sound integration of
µ-calculus model checking into other verification systems such as PVS [23]. Using
Shankar’s kernel of truth [28] approach, which is based on checking the verifica-
tion and on verifying the checker, certificates are generated using an untrusted
implementation of our µ-calculus model checking algorithms, and certificates are
then checked by means of an executable PVS function, which itself is verified in
a trusted kernel of PVS.

References

1. Biere, A., Zhu, Y., Clarke, E.: Multiple state and single state tableaux for com-
bining local and global nodel checking. In: Olderog, E.R., Steffen, B. (eds.) Cor-
rect System Design, Lecture Notes in Computer Science, vol. 1710, pp. 163–179.
Springer (1999)

2. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods in System Design 28(1),
37–56 (2006)

3. Bradfield, J., Stirling, C.: Modal mu-calculi. Studies in Logic and Practical Rea-
soning 3, 721–756 (2007)

4. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–
330. Elsevier (2001)

5. Buhrke, N., Lescow, H., Vöge, J.: Strategy construction in infinite games with
streett and rabin chain winning conditions. In: Margaria, T., Steffen, B. (eds.)
TACAS. Lecture Notes in Computer Science, vol. 1055, pp. 207–225. Springer
(1996)

6. Clarke, E., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking.
In: Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium
on. pp. 19–29. IEEE (2002)

7. Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In: Proceedings of the 32nd
annual ACM/IEEE Design Automation Conference. pp. 427–432. ACM (1995)

8. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus.
Acta Informatica 27(8), 725–747 (1990)

9. Duret-Lutz, A.: Contributions à l’approche automate pour la vérification de pro-
priétés de systèmes concurrents. Phd thesis, Université Pierre et Marie Curie (Paris
6) (Jul 2007), https://www.lrde.epita.fr/~adl/th.html

10. Duret-Lutz, A., Poitrenaud, D., Couvreur, J.M.: On-the-fly emptiness check of
transition-based Streett automata. In: Liu, Z., Ravn, A.P. (eds.) ATVA’09. Lecture
Notes in Computer Science, vol. 5799, pp. 213–227. Springer (2009)

11. Emerson, E., Jutla, C., Sistla, A.: On model-checking for fragments of µ-calculus.
In: Courcoubetis, C. (ed.) Computer Aided Verification, Lecture Notes in Com-
puter Science, vol. 697, pp. 385–396. Springer (1993)

12. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS’91). pp. 368–377. IEEE (1991)

13. Grädel, E.: Back and forth between logic and games. In: Apt, K., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientists, pp. 99–138. Cambridge Univer-
sity Press (2011)

14. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Proceedings of the 9th
international conference on Tools and algorithms for the construction and analysis
of systems. pp. 160–175. Springer (2003)

15. Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of streett
automata and for communication protocol pruning. In: in Scandinavian Workshop
on Algorithm Theory. pp. 16–27. Springer (1996)

16. Hofmann, M., Rueß, H.: Certification for µ-calculus with winning strategies. ArXiv
e-prints (Jan 2014)

17. Jurdziński, M.: Algorithms for solving parity games. In: Apt, K., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientists, pp. 74–98. Cambridge Univer-
sity Press (2011)

18. Kick, A.: Generation of counterexamples for the µ-calculus. Tech. Rep. ira-tr-1995-
37, Universität Karlsruhe, Germany (1995)

19. Martin, D.A.: Borel determinacy. The annals of Mathematics 102(2), 363–371
(1975)

20. Namjoshi, K.: Certifying model checkers. In: Computer Aided Verification. pp.
2–13. Springer (2001)

21. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 106–119. ACM
(1997)

22. Neukirchen, C.: Computation of winning strategies for µ-calculus by fixpoint iter-
ation. Master’s thesis, Ludwig-Maximilians-Universität München (Nov 2014)

23. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Automated Deduction—CADE-11, pp. 748–752. Springer (1992)

24. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science pp. 292–
304 (2001)

25. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based empti-
ness checks for generalized Büchi automata. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) Proceedings of the 19th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’13). Lecture Notes in
Computer Science, vol. 8312, pp. 668–682. Springer (Dec 2013)

26. Seidl, H.: Fast and Simple Nested Fixpoints. Universität Trier, Mathematik/
Informatik, Forschungsbericht 96-05 (1996)

27. Shankar, N., Sorea, M.: Counterexample-driven model checking (revisited version).
Tech. Rep. SRI-CSL-03-04, SRI International (2003)

28. Shankar, N.: Rewriting, inference, and proof. In: Rewriting Logic and Its Applica-
tions, pp. 1–14. Springer (2010)

29. Sorea, M.: Dubious witnesses and spurious counterexamples (2005), http://www.
cs.man.ac.uk/~msorea/talks/york.pdf, uK Model Checking Days, York

30. Sorea, M.: Verification of real-time systems through lazy approximations. Ph.D.
thesis, University of Ulm, Germany (2004)

31. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In: TAP-
SOFT’89. pp. 369–383. Springer (1989)

32. Streett, R., Emerson, E.: The propositional mu-calculus is elementary. In:
Paredaens, J. (ed.) Automata, Languages and Programming, Lecture Notes in
Computer Science, vol. 172, pp. 465–472. Springer (1984)

33. Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen,
K. (eds.) Computer Aided Verification, Lecture Notes in Computer Science, vol.
2404, pp. 641–680. Springer (2002)

34. Vardi, M., Wilke, T.: Automata: From logics to algorithms. In: WAL. pp. 645–753
(December 2007)

35. Winskel, G.: A note on model checking the modal ν-calculus. Theoretical Computer
Science 83(1), 157–167 (1991)

