
Computation of winning strategies

for µ-calculus by fixpoint iteration

Christian Neukirchen

München 2014

Computation of winning strategies

for µ-calculus by fixpoint iteration

Christian Neukirchen

Masterarbeit
am Institut für Informatik

der Ludwig-Maximilians-Universität München

vorgelegt von
Christian Neukirchen

geboren in Biberach am 16.08.1987

angemeldet am 20. Mai 2014
eingereicht am 11. November 2014

Betreuer: Prof. Martin Hofmann, PhD
Lehr- und Forschungseinheit für Theoretische Informatik

Contents

Preface 3

Chapter 1. Model checking and the modal µ-calculus 5
1.1. Goals of model checking 5
1.2. Labelled transition systems 6
1.3. µ-calculus syntax 6
1.4. Set semantics, fixpoint iteration, Knaster-Tarski 7
1.5. µ-calculus systems of equations 8
1.6. Expressivity of model checking logics 9
1.7. A few examples 9
1.8. Certified model checking 10
1.9. Model checking and proof assistants 11
1.10. Addressing state space explosion 12

Chapter 2. Parity games and strategies 15
2.1. Parity games 15
2.2. Strategies and positional strategies 15
2.3. Certificates for winning strategies 16

Chapter 3. Certification for µ-calculus 17
3.1. Model checking as parity game 17
3.2. Partial winning strategies 19
3.3. Strategy semantics 19
3.4. An example strategy 21
3.5. Checking strategies 22
3.6. The move relation 23
3.7. Simple, recursive checking of strategies 23
3.8. Efficient checking of strategies with strongly connected components 25
3.9. Generating counterexamples 25
3.10. Verification of counterexamples 26
3.11. Complexity analysis 26

Chapter 4. Implementation and optimization 27
4.1. Implementation 27
4.2. Optimization of checking 27
4.3. Optimization of the implementation 28
4.4. Benchmarks 28

i

ii CONTENTS

Chapter 5. Perspectives 31
5.1. Summary of the work 31
5.2. Further possible optimizations 31
5.3. Formal verification 31
5.4. Comparison to verified model checkers 32

Appendix A. Appendix: Using Micromu 33
A.1. Command line arguments 33
A.2. LTS file format 33
A.3. MU file format 34

Appendix B. Appendix: Micromu Source Code 35
B.1. Labelled transition systems 35
B.2. µ-calculus formulae 37
B.3. Partial winning strategies 41
B.4. Strategy checker interface 45
B.5. Simple strategy checker 45
B.6. Streett-automaton strategy checker 49
B.7. Main driver 54

Appendix. Bibliography 59

Abstract

We present an implementation of a model checker for µ-calculus that
certifies its result as a winning strategy for a corresponding parity game.
The winning strategy is computed by means of a fixpoint iteration,
similar to the well-known set semantics of µ-calculus, and can be
regarded as a instrumentation thereof. The computed certificates are
compact and can be checked efficiently in low polynomial time by a
separate routine.

Kurzzusammenfassung

Wir stellen eine Implementation eines Modellprüfers für den µ-Kalkül
vor, die mithilfe von Gewinnstrategien für ein korrespondierendes Pa-
ritätsspiel ihr Rechenergebnis zertifiziert. Die Gewinnstrategie wird
mittels Fixpunktiteration berechnet, in einem Prozess ähnlich der be-
kannten Mengensemantik des µ-Kalküls, und kann als Instrumentierung
dieser aufgefasst werden. Die berechneten Zertifikate sind kompakt und
können effizient in niedriger Polynomialzeit durch ein eigenständiges
Programm überprüft werden.

Preface

Writing correct software is hard, and thus over the last decades, many techniques have
been developed to assist programmers produce better software. Especially applications
such as embedded systems, device control and concurrent systems have high demand
for safety and correctness, because large sums or even human life are at hazard in case
of a malfunction. For these applications, mere testing does not cut it, because tests
cannot—in all but the simplest cases—be exhaustive, but we want the guarantee that
things cannot go wrong.

Formal verification methods such as deductive verification allow us to prove generic
propositions about our programs. However, these proofs generally require large effort
and significant human assistance. Often, using these methods cannot be justified because
it would take too long or is very expensive.

Model checking provides a middle ground: properties can be verified automatically,
and the restrictions implied (such as finite models or less expressive calculi) are gratefully
accepted as a trade-off. Thus, model checking became the probably most successful
verification technique that is used in real-life industrial applications, spanning the wide
range from network protocols and chip design to aircraft collision avoidance systems or
self-destruction of sounding rockets.

However, one problem remains: akin to Juvenal’s question “Quis custodiet ipsos
custodes?”, we can ask “Who proves the model checkers correct?” Industrial grade model
checkers are large and complex applications, and the more sophisticated and optimized
their algorithms become, the more likely there is a bug somewhere which could yield a
wrong result—with possibly fatal consequences.

But there is a resort: we can implement a model checker which certifies its result,
that is, a second program—the certificate checker—can independently (and hopefully
more efficiently than the model checker itself!) verify that the result of the model checker
is correct. In case of a disproof, this is easy: you can just output a single counterexample
that refutes the proposition. How do you certify that the formula holds, though?

Hofmann and Rueß [19] propose a solution: we can certify propositions in µ-calculus,
a very general model checking calculus, using winning strategies for parity games cor-
responding to the µ-calculus formula. We have implemented a simple model checker
(named Micromu) based on µ-calculus which computes these winning strategies while
performing the model check. Verifying these winning strategies is comparatively easy and
can be done completely independent. This allows us to satisfy the so-called de Bruijn
criterion of “satisfying the possibility of independent checking by a small program” [1].
Now, we only need to trust this small program, the certificate checker, as it will notice
when the (potentially large and complex) model checker made a mistake.

3

4 PREFACE

Thinking one step ahead, we can also formally verify the certificate checker (hopefully
using a proof assistant that fulfills the de Brujin criterion itself), and it’s almost as good
as having the full model checker proved formally. You could even say it’s better, because
the proof that the certificate checker works does not tangent the model checker at all!
You can freely improve the model checker without danger of undetected false results.

Overview. We progress in the following order: Chapter 1 addresses model checking
and defines the models and formulae we use throughout, as well as their fundamental
semantics. We strive through different temporal logics and approaches for tackling
common problems in model checking. We also review existing tools.

In Chapter 2, we define parity games and associated objects, such as game strategies
and explain how strategies can be used as certificates.

Next, Chapter 3 is the heart of this work: we show how to interpret model checking
problems as parity games, and how to construct winning strategies for these games by
means of fixpoint iteration. We also show how these winning strategies can be used as
certificates, and how to check them. The chapter concludes with a complexity analysis of
the algorithms presented.

Chapter 4 illustrates how the ideas of Chapter 3 have been implemented in our
prototype implementation Micromu. We underline the feasibility of this implementation
with a some benchmarks.

Subsequently, Chapter 5 summarizes the work and our contributions. We point out
areas that deserve further attention and ideas for further research.

Appendix A is a short user’s manual for people that want to work with Micromu.
Finally, Appendix B contains most of the code that is part of the implementation of

Micromu.

Notation. The set of natural numbers N always includes zero. We use ⊂ for proper
subsets only and ⊆ else. We use t for disjoint unions. In µ-calculus notation, quantifiers
bind as far as possible, that is, µX.a ∨ b is to be read as µX.(a ∨ b). Partial functions
from a set S into a set T are denoted as f : S ⇀ T .

Other notations are introduced when needed.

Acknowledgments. Thanks go to Martin Hofmann for the continuous supervision
and very helpful discussions, and to Harald Rueß for pointing out some intricacies of
µ-calculus and helping me to understand the big picture.

— Christian Neukirchen
Munich, November 2014

CHAPTER 1

Model checking and the modal µ-calculus

We understand model checking as the discipline of exhaustive proofs on finite struc-
tures. In particular, we want to verify whether formulae of temporal logic hold on infinite
paths of given labelled transition systems.

1.1. Goals of model checking

Exhaustive proofs are both a blessing and a burden of this formal method: Obviously,
exhaustive checks are easy to mechanize, work completely automatized and have no prob-
lems with soundness. Yet, the combinatorial explosion of states is easy to underestimate
and requires a high degree of abstraction to make viable models.

Model checking is also popular for concurrent systems, where its exhaustiveness
guarantees that no possible interleaving of programs can reach a failure state. However,
also in this case the number of states and transitions grows exponentially in the amount
of concurrent threads that are modelled.

Classically, model checking uses logical systems of limited expressiveness such as
Linear Time Logic (LTL) or Computation Tree Logic (CTL). The logic CTL*, which
unites LTL and CTL, is often the most rich logic investigated.

In contrast, µ-calculus subsumes all these. LTL and CTL formulae can be translated
into µ-calculus in a relatively straight-forward way, and it can be shown that µ-calculus,
limited to this subset, is (algorithmically) not less efficient than specialized model checking
supporting LTL or CTL only. Obviously, more complex (and thus more expressive)
formulae of µ-calculus will make the problems harder, but this price is only paid when
necessary. Thus, studying µ-calculus is a viable approach for solving general model
checking problems, even if the full power is not required for actual applications [14].

model

model checker

result

counterexampleformula

Figure 1.1. Standard model checking workflow.

5

6 1. MODEL CHECKING AND THE MODAL µ-CALCULUS

We will try to explain the differences between different methods of model checking
using workflow diagrams such as fig. 1.1: For classic model checking, we need to specify the
model (more on how this looks like in the next section) and a formula stating the property
we want to check. Both inputs are handed to the model checker (programs/algorithms
are displayed as rectangles), which then computes a Boolean result, whether the formula
is satisfied by the model or not (Boolean results are drawn as diamonds). Often, model
checkers can compute counterexamples in case the formula does not hold, but when it
does we only get a “that’s right”.

1.2. Labelled transition systems

Our models are labelled transition systems (short LTS, also known in the literature as
Kripke structures).

We use a standard definition of labelled transition systems:

Definition 1.1. A labelled transition system is a quadruple L = (S,
a−→,A, T), where

S is a non-empty set of states,
a−→⊆ S×S, a family of left-total transition relations on S,

indexed over A, the set of actions. The function T : S → 2P assigns which propositions
p ∈ P are considered to be true at each state s ∈ S.

Note that the relation
a−→ is required to be left-total, i.e. there needs to be a possible

further move from each state. Thus, all paths on the transition system are infinite paths.
We make no further assumptions about the actions, and will generally consider a

generic action a only.
We mostly consider finite LTS later, i.e. all sets of the quadruple are finite.

1.3. µ-calculus syntax

Definition 1.2. A µ-calculus formula φ ∈ Φ has the following syntax:

φ ::= X (variables)

| p | ¬p (atomic propositions)

| [a]φ (for all a-transitions)

| 〈a〉φ (a-transition exists)

| φ1 ∧ φ2 | φ1 ∨ φ2

| µX.φ (least fixpoint)

| νX.φ (greatest fixpoint)

Compared to other expositions such as, e.g. Emerson [11], we do not define 〈a〉,
∨ and µX.φ as syntactic sugar together with general negation: allowing only atomic
propositions to be negated, we can ensure monotonicity of all syntactically valid formulae.
Else, would need to ensure every variable only appears with the same polarity : either
never negated or always negated. (Consider the formula ¬X ∨ 〈a〉X on a LTS 0 � 1;
there is no fixed point.)

1.4. SET SEMANTICS, FIXPOINT ITERATION, KNASTER-TARSKI 7

1.4. Set semantics, fixpoint iteration, Knaster-Tarski

Given a µ-calculus term, what does it actually mean? We define the following set
semantics for µ-calculus as a function sem : Φ× (X → 2S)→ 2S , which given a formula φ
and an environment η : X → 2S , returns the set of states of the LTS where the formula is
satisfied.

The set semantics of a µ-calculus formula is given recursively by:

sem(X, η) = η(X)

sem(p, η) = T (p)

sem(¬p, η) = S \ T (p)

sem(φ1 ∧ φ2, η) = sem(φ1, η) ∩ sem(φ2, η)

sem(φ1 ∨ φ2, η) = sem(φ1, η) ∪ sem(φ2, η)

sem([a]φ, η) = p̃re(
a−→)(sem(φ, η))

sem(〈a〉φ, η) = pre(
a−→)(sem(φ, η))

sem(µX.φ, η) = iterX(φ, η,∅)

sem(νX.φ, η) = iterX(φ, η, S)

The first five cases are clear: a variable X holds exactly at the states it is set to, and
where p and ¬p are true is determined by T . In order for a conjunction φ1 ∧ φ2 to be
true, both operands need to be true, we thus intersect the results. For the disjunction
φ1 ∨ φ2, it is enough for one side to be true, thus we take the union of the resulting sets.

Next, pre is the preimage and p̃re the weakest precondition, defined as follows:

s ∈ p̃re(a−→)(U)⇔ ∀t ∈ S. s a−→ t =⇒ t ∈ U

s ∈ pre(a−→)(U)⇔ ∃t ∈ S. s a−→ t ∧ t ∈ U

A state s is included in the weakest precondition of U , exactly when all possible

moves s
a−→ t lead into U . A state s is part of the preimage of U , if there is at least one

possible move s
a−→ t that leads into U . We therefore get the asked-for semantics of [a]φ

meaning “take any a-transition, then fulfill φ”, respectively 〈a〉φ meaning “there is an
a-transition, take it, then fulfill φ.”

µX.φ and νX.φ are defined by fixpoint iteration. This means we apply a rule of
computation until the result stays the same. Here, we stop when further application of
sem does not change the result:

iterX(φ, η, U) = let U ′ := sem(φ, η[X := U]) in

if U = U ′ then U else iterX(φ, η, U ′)

In order to see why this definition is well-defined, we need the following definitions:

Definition 1.3. A function f from sets to sets is monotone, if

x ⊆ y =⇒ f(x) ⊆ f(y).

8 1. MODEL CHECKING AND THE MODAL µ-CALCULUS

Theorem 1.1 (Knaster-Tarski). If f is a monotone function from sets to sets, then

lfp(f) =
⋂

f(P)⊆P

P gfp(f) =
⋃

P⊆f(P)

P

exist, such that

f(lfp(f)) = f f(gfp(f)) = g.

We say lfp is the least fixed point, while gfp is the greatest fixed point.

Proof. A proof for arbitrary partial orders on sets can be found in [26, Theorem
10.29]. For a general, constructive proof on complete lattices, see Cousot and Cousot
[6]. �

Theorem 1.2 (Finite Knaster-Tarski). Let S be a finite set of size n and f : S → S
a monotone function, then

lfp(S) = fn(∅) gfp(S) = fn(S)

where fn is the n-times iterated application of f .
Therefore, the fixpoints can be computed in finitely many steps.

Proof. Since there are only n elements in S, consider the chain ∅ ⊆ f(∅) ⊆
f(f(∅)) ⊆ · · · ⊆ fn−1(∅). If one ⊆ actually is =, we have found the fixpoint already. It
is the least fixpoint by construction. Else, there are n− 1 different elements in fn−1(∅),
thus fn(∅) = f(fn(∅)) since the set cannot grow further. Analogously, we prove the
statement for gfp. �

1.5. µ-calculus systems of equations

There is an alternate representation of µ-calculus formulae as in definition 1.2 which
uses a system of equations. A formula φ gets converted to an ordered list of formulae
(X = φX)X , with one formula φX for each variable X occurring in φ. For simplicity, we
assume variable names don’t clash, in doubt α-renaming needs to be performed first.

Every quantifier introduces a new equation: µX. · · ·X · · · turns into X
µ
= · · ·X · · · ,

likewise for νX.φ. The formulae are ordered such that subformulae come after the formula
containing them, for example:

νZ.(¬t1 ∨ (µX.c1 ∨ [a]Z)) ∧ [a]Z

turns into

Z
ν
= (¬t1 ∨X) ∧ [a]Z

X
µ
= c1 ∨ [a]Z

The order of equations is relevant if we want to restore the original formula. If we
had started with

X
µ
= c1 ∨ [a]Z

Z
ν
= (¬t1 ∨X) ∧ [a]Z

1.7. A FEW EXAMPLES 9

we would retrieve
µX.c1 ∨ [a](νZ.(¬t1 ∨X) ∧ [a]Z).

In case the formula does not start with a qualifier, a fresh variable needs to be
introduced and bound to the formula in first place.

This representation is advantageous for our implementation as it allows cheap sub-
stitution of variables for concrete sets of states. To look up a X, we can first check
the environment whether η(X) is defined, and fall back to looking up X in the system
of equations. We therefore don’t need to rewrite µ-terms later, which would be very
expensive when they nest deeply.

1.6. Expressivity of model checking logics

µ-calculus can be seen as a generalization of other temporal logics used in model
checking, such as LTL, CTL or CTL*. CTL* can express everything that can be specified
in both LTL and CTL, but µ-calculus is strictly more powerful than CTL* [36].

In fact, every CTL formula can be embedded in µ-calculus with a quantifier alternation
depth of 1 and every LTL or CTL* formula with an alternation depth of 2 [14]. Since
µ-calculus becomes strictly more expressive with more alternations [20], it is therefore
more expressive than CTL*.

1.7. A few examples

To the reader familiar with Computation Tree Logic, it is instructive to see how we
can rewrite CTL formulae in µ-calculus [11]:

EFφ ≡ µZ.φ ∨ 〈a〉Z
AGφ ≡ νZ.φ ∧ [a]Z

AFφ ≡ µZ.φ ∨ [a]Z

EGφ ≡ νZ.φ ∧ 〈a〉Z
A(φUψ) ≡ µZ.ψ ∨ (φ ∧ [a]Z)

E(φUψ) ≡ µZ.ψ ∨ (φ ∧ 〈a〉Z)

For example, “q holds everywhere along any path” can be written in CTL as “AGq”,
and would translate into µ-calculus as

νZ.q ∧ [a]Z

that is, “the greatest fixpoint of Z, where q holds and any possible step leads into Z
again”. Thus, this formula holds exactly at the states where q is true and stays true for
every possible path of transitions.

For a more complex example, we’ll look at

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y
This means: “the greatest fixpoint of X, then the least fixpoint of Y , such that

q holds and we get with a single step into X again, or else we get with a single step
back into Y ”. To fulfill this, we need satisfy the condition leading into X, that is, visit

10 1. MODEL CHECKING AND THE MODAL µ-CALCULUS

q infinitely often (but not necessarily in each step). Thus, this is a fairness condition
for q: we never reach a state where we can not visit q ever again. Conditions like these
are popular properties to verify using model checking, for example to avoid livelocks or
starvation.

As an explicit argument to show that µ-calculus is more expressive than CTL*, we
look at the formula

νX.p ∧ 〈a〉〈a〉X
which means “p is true at every second step”, a concept which cannot be expressed in
CTL* [36].

We can see that raw µ-calculus can be quite difficult to write properties in. It is
however practical to use µ-calculus as a target language for more “user friendly” model
checking calculi (It is not for nothing that some call µ-calculus “the assembler of model
checking”).

1.8. Certified model checking

The computation of counterexamples is a standard feature for most model checking
systems. Certifying model checkers have been proposed by Namjoshi [25]. For CTL,
witnesses can be used to certify valid propositions [29].

These witnesses often are rather concrete: for example EFφ (“there exists a path
such that φ holds finally”) could be witnessed by the prefix of the run such that φ holds
at the last position.

model

certifiying
model checker certificate checker

result

certificate

formula

check
result

Figure 1.2. Certified model checking workflow.

Schematically (see fig. 1.2) certified model checking works as follows: again, we have
a model and a formula we want to verify. However, instead of outputting the Boolean
result only, the certifying model checker also outputs a certificate of the result. This
certificate then can be passed to a separate certificate checker, together with the model
and the formula. The certificate checker verifies the result of the model checker, and
outputs whether the check has passed or not. When the certificate checker says the
certificate is valid, the result of the model checker can be trusted. Else, an error has been
found—the formula may or may not be satisfied.

1.9. MODEL CHECKING AND PROOF ASSISTANTS 11

For model checking logics with higher quantification, it’s not immediately clear what
a certificate is. The use of game strategies has been proven fruitful:

The relationship between µ-calculus and game theory has been known for a long time,
e.g. as parity games [13] or as Ehrenfeucht-Fräıssé games [30]. However, the equivalence
between parity games and µ-calculus is often shown using signatures, requiring infinite
ordinals and transfinite induction [25, 33]. These constructions of winning strategies
happen in a global manner, which makes proofs and implementation quite complicated.

The main contribution of the presented algorithm are that it is defined inductively
on the µ-formula and how close the strategy computation is to the fixpoint iteration of
set semantics. Strategy computation is straight-forward and can be seen as augmenting
the computation of set semantics using fixpoint iteration (see section 3.3).

1.9. Model checking and proof assistants

Model checking is also interesting when it can be used inside larger, deductive proofs.
When (sub-)problems can be abstracted as model checking problems, an automated solver
for µ-calculus can be a useful tool for proof development. The probably most well-known
implementation of this is the µ-calculus model checker part of PVS [28], which has been
implemented as a primitive proof rule. Predicates which only depend on finite state can
be verified automatically by the system, using model checking techniques.

theory

PVS
model checker proof

proof
obligation

Figure 1.3. PVS workflow.

The PVS model checker is used as in fig. 1.3: during development of our proof, we
have a proof obligation we need to work on that is essentially a µ-calculus formula. The
formula refers to finite logic variables and predicates only, thus it can be solved by the
model checker. Instead of an explicit LTS construction, the model is given by predicates
of the theory. Applying the model checker, we get a Boolean result of whether or not
the µ-formula was true. PVS will regard this as a proof for the obligation and we can
continue with other parts of the proof.

Since this outcome is not certified, the PVS approach is suspect to bugs which can
result in proving false properties, as discussed in the preface.

There have also been efforts to provide a verified implementation of µ-calculus in
Coq, named SMC [35]. In contrast to the former, the latter implementation is actually
verified using Coq itself and its results can be checked independently using the Coq proof

12 1. MODEL CHECKING AND THE MODAL µ-CALCULUS

verifier coqchk. It is also possible to generate a standalone, verified µ-calculus checker
using Coq’s code extraction features. Since the whole model checker (including a library
for binary decision diagrams) has been implemented in Coq, this was a quite elaborate
development.

theory

Coq/SMC proof coqchk

proof
obligation

check
of proof

Figure 1.4. Coq/SMC workflow.

The Coq/SMC workflow (fig. 1.4) starts quite similar to the PVS one. Again, a proof
obligation in the shape of a µ-calculus formula (for a model given by the theory) requires
proof. However, the output of SMC is a proof term, a term in the Calculus of Inductive
Constructions, the foundation of Coq. We can continue proving, and in the end the whole
proof can be checked using the standalone verifier coqchk. It will then tell us whether
our proof is correct, or whether there is a bug in Coq (or SMC!).

We also want to mention CAVA [15], a model checker for LTL implemented and
verified using Isabelle/HOL. Since it uses a more restricted temporal logic, it cannot
be compared directly to PVS or SMC. It can be extracted to Standard ML and has
considerable performance.

1.10. Addressing state space explosion

As stated in the introduction to this chapter, state space explosion can be a serious
problem when trying to use model checking. Considering that a C program with six
32-bit int variables has more possible states than there atoms in the universe, it is
easy to see that tractable problems only have a few bits of possible state that should
be explored. However, this is often enough for hardware designs or building blocks of
protocols.

There are multiple ways to counter it, in particular two different aspects, which both
try to reduce the state space that is visited:

In symbolic model checking [24] we avoid building the state graph and describe it
using Boolean formulae instead. The transition relation is given by a Boolean implication
that is true for allowed moves. States are not merely enumerated but given as a vector
of Boolean variables. By using binary decision diagrams (BDDs), these formulae can be
stored and manipulated effectively.

For local model checking [31], we want to verify that a particular formula is satisfied
for a given single state, and are not interested in a global solution. Often, the possible

1.10. ADDRESSING STATE SPACE EXPLOSION 13

transitions are determined on the fly, thus precomputation or storage of the whole state
graph is not required.

Our approach is consistent with symbolic model checking, but it is not yet clear
whether the strategy computation can be adopted for local model checking. The strategy
checkers we have implemented already operate on the fly.

CHAPTER 2

Parity games and strategies

Since our certificates for µ-calculus are winning strategies for parity games, we will
quickly review the relevant definitions.

2.1. Parity games

Definition 2.1. A parity game is given by a quintuple G = (V, V0, V1,→,Ω), where
V = V0 t V1 is a non-empty set of vertices (called positions), precisely the disjoint union
of V0 and V1. The left-total relation → ⊆ V × V defines the possible moves between
positions. Every position has a priority given by Ω : V → N with finite range.

Parity games are played like this: There are two players, numbered 0 (the proponent)
and 1 (the opponent). Players move a token on the game graph along the move relation
→. The destination position decides who moves next, depending on whether it is in V0

and V1.
A play takes infinitely many turns. In order to find out who wins, we need to take a

look at the positions which are reached infinitely often (so-called “recurrent positions”)
and compute their priorities using Ω. When the maximum priority is even, player 0 wins,
when it is odd, player 1 wins.

2.2. Strategies and positional strategies

To analyze how parity games can be won, we study strategies:

Definition 2.2. A strategy σ for player i of a parity game is a function σ : V n →
V, n ∈ N such that for every ~v ∈ V n, i < n =⇒ vi → vi+1 is a valid move, vn ∈ Vi
and σ(~v) = v′ with vn → v′. That is, given a finite prefix of a series of valid moves, it
determines the next valid move the player takes.

We say that player i wins from position v0 ∈ V if there exists a strategy σi such that
any play starting from v0 results in player i winning, no matter which strategy σ1−i the
other player pursues.

Definition 2.3. We call Wi the winning set of player i when a strategy σi exists
such that player i wins from every v ∈Wi.

Theorem 2.1. Every position in the game is either in the winning set of player 0 or
player 1: V = W0 tW1.

Proof. This follows from a more general result on Borel Determinacy, see Martin
[23].

A detailed proof using only elementary game theory an be found in Hofmann and
Lange [18, Theorem 15.5]. �

15

16 2. PARITY GAMES AND STRATEGIES

It turns out that knowing the positions before the current one is not required:

Definition 2.4. A strategy σ is positional if it only depends on vn.

Theorem 2.2. There is a positional strategy such that player i wins from every
v ∈Wi.

Proof. C.f. Emerson and Jutla [13]. �

2.3. Certificates for winning strategies

Given a parity game and a suspected positional winning strategy, how can we
determine whether the winning strategy really works?

We need to play the parity game and find the recurrent positions. For proponent,
we have a winning strategy that says how to move at each turn (if it is not defined, the
strategy was bad and we have lost automatically). For opponent, we need to consider
every legal move that could happen. Evaluating these moves, we need to check the cycles
(i.e. series to moves that return to the same position) we encounter: positions part of a
cycle can be visited infinitely often and are therefore relevant to the winning condition.
We compute the largest priority in the cycle and check that it has even parity, else there
is a way the strategy loses. Once we have confirmed all cycles have even parity, the
strategy is indeed a winning strategy.

A more efficient approach will be presented in section 3.8.

CHAPTER 3

Certification for µ-calculus

Given these preparations, we can now put them together and certify µ-calculus
formulae.

3.1. Model checking as parity game

We will now model the semantics of a µ-calculus formula as a parity game. The
proponent (player 0) tries to prove the formula, the opponent (player 1) tries to find a
counterexample.

The positions of the parity game are given by (φ, s), where φ is a subformula of
the formula we want to prove and s ∈ S is a state of the LTS. We use the notation
(φ, s) ; (φ′, s′) for the possible move relation.

For the disjunction φ1 ∨ φ2, proponent is allowed to choose which side of the formula
we consider true:

(φ1 ∨ φ2, s) ; (φ1, s)

(φ1 ∨ φ2, s) ; (φ2, s)

In the case of a diamond 〈a〉φ, proponent needs to pick a transition s
a−→ s′ in the

LTS:

(〈a〉φ, s) ; (φ, s′)

For the conjunction φ1 ∧ φ2, the opponent chooses which side to play (since both
sides need to be satisfiable):

(φ1 ∧ φ2, s) ; (φ1, s)

(φ1 ∧ φ2, s) ; (φ2, s)

Likewise, for the box [a]φ, opponent can chose any transition s
a−→ s′ of the LTS (since

all possible successor states s′ need to be satisfiable):

([a]φ, s) ; (φ, s′)

For quantified formulae, there is only one possible move. Strictly speaking, the
proponent moves for µX.φ and opponent moves for νX.φ. We assume the “system of
equations” interpretation, and thus X inside the formula refers to the quantified formula.

(µX.φ, s) ; (φ, s)

(νX.φ, s) ; (φ, s)

17

18 3. CERTIFICATION FOR µ-CALCULUS

Finally, for variables X and (possibly negated) propositions p, the game loops
endlessly:

(X, s) ; (X, s)

(p, s) ; (p, s)

(¬p, s) ; (¬p, s)

What remains to properly define the parity game is the priority function Ω : Φ×S → N.

Ω(µX.φ, s) = 2 · nd(µX.φ) + 1

Ω(νX.φ, s) = 2 · nd(νX.φ)

Ω(p, s) =

{
0 if p ∈ T (s)

1 if p /∈ T (s)

Ω(¬p, s) =

{
1 if p ∈ T (s)

0 if p /∈ T (s)

Ω(X, s) =

{
0 if s ∈ η(X)

1 if s /∈ η(X)

Ω(φ, s) = 0 otherwise

For X, p and ¬p, this definition is intuitive: in the “good” case it should be even,
while in the “bad” case it is odd. The outer quantifiers are more powerful than the inner
ones, thus their priority depends on nd(φ), the nesting depth of the formula φ, defined
recursively by:

nd(µX.φ) = 1 + nd′(X,φ)

nd(νX.φ) = 1 + nd′(X,φ)

nd(φ) = 0 otherwise

nd′(X,φ) = 0 if X /∈ FV (φ)

nd′(X,X) = 0

nd′(X,φ1 ∨ φ2) = max{nd′(X,φ1), nd′(X,φ2)}
nd′(X,φ1 ∧ φ2) = max{nd′(X,φ1), nd′(X,φ2)}

nd′(X, [a]φ) = nd′(X,φ)

nd′(X, 〈a〉φ) = nd′(X,φ)

nd′(X,µY.φ) = max{nd(µY.φ), nd′(X,φ)}
nd′(X, νY.φ) = max{nd(νY.φ), nd′(X,φ)}

Since the nesting depth is bound by the length of the formula φ, Ω has finite range.

3.3. STRATEGY SEMANTICS 19

3.2. Partial winning strategies

As we saw above, proponent can only make a choice in a few cases of game play. We
need to chose which side of disjunction we follow and which state to move to in case of a
diamond. The other moves are predetermined or out of proponent’s control.

We will define the winning strategy as a partially defined strategy, whose domain will
increase during construction. The domain of the partial winning strategy corresponds to
the winning set of the player.

Definition 3.1. A partial winning strategy for µ-calculus is a partial function

Σ : Φ× S ⇀ s (move to state s ∈ S)

| 1 (take the left formula)

| 2 (take the right formula)

| ∗ (take the only move)

We denote the function with the empty domain as {}, and use a set comprehension
like syntax {x 7→ y} to construct the partial function with value y at point x. In order to
incrementally build strategies, we need to define how to combine them into a bigger one:

Definition 3.2. Given two winning strategies Σ and Σ′, we define the partial winning
strategy Σ + Σ′ as

(Σ + Σ′)(φ, s) = if (φ, s) ∈ dom(Σ)

then Σ(φ, s)

else Σ′(φ, s)

Note that this definition “prefers” the strategy on the left hand side.

3.3. Strategy semantics

We can now describe how to build the strategy with a fixpoint iteration akin to
section 1.4.

sem(X)η = {(X, s) 7→ ∗ | s ∈ η(X)}
sem(p)η = {(p, s) 7→ ∗ | p ∈ T (s)}

sem(¬p)η = {(p, s) 7→ ∗ | p /∈ T (s)}
sem(φ ∧ ψ)η = sem(φ)η + sem(ψ)η

+ {(φ ∧ ψ, s) 7→ ∗ | (φ, s) ∈ dom(sem(φ)η)

∧ (ψ, s) ∈ dom(sem(ψ)η)}
sem(φ ∨ ψ)η = sem(φ)η + sem(ψ)η

+ {(φ ∨ ψ, s) 7→ 1 | (φ, s) ∈ dom(sem(φ)η)}
+ {(φ ∨ ψ, s) 7→ 2 | (ψ, s) ∈ dom(sem(ψ)η)}

20 3. CERTIFICATION FOR µ-CALCULUS

sem([a]φ)η = sem(φ)η

+ {([a]φ, s) 7→ ∗ | (φ, s) ∈ dom(sem(φ)η)}
sem(〈a〉φ)η = sem(φ)η

+ {(〈a〉φ, s) 7→ s′ | s a−→ s′ ∧ (φ, s′) ∈ dom(sem(φ)η)}

sem(νX.φ)η = sem(φ)η[X:=sem(φ,η)]

sem(µX.φ)η = iterX(φ, η, {})

iterX(φ, η,Σ) = let Σ′ := sem(φ)η[X:=dom(Σ)] in

if Σ = Σ′ then Σ else iterX(φ, η,Σ′)

Most cases are straight-forward: for true variables X, as well as propositions p which
hold, or propositions ¬p which do not hold, we are done.

The conjunction φ ∧ ψ is built recursively, taking the strategies for the subformulae,
and letting opponent decide where to move to iff both operands are in the domain of the
partial winning strategy.

Analogously, for a disjunction φ ∨ ψ we can decide which side to choose. After
computing the strategy for the subformulae, we just take the first formula that can win.

For the modal operators, we let opponent move however it wants in the case of [a]φ,
but we need to grow the domain of the strategy for the fixpoint iteration to work. Thus
we add [a]φ to the strategy when we can win for φ, even if this move is never requested.
For 〈a〉φ, we can pick any fortunate move into our winning domain.

More interesting are νX.φ and µX.φ: In the case of µX.φ, we apply fixpoint iteration
again, just like for the set semantics. By construction, the domain of the partial winning
strategy only grows. We can thus start with the empty strategy, and grow its domain by
assuming the bound variable X to be true where the strategy already wins. Since our
formulae and the transition systems are finite, this fixpoint iteration always terminates
(Theorem 1.2).

For νX.φ, we cannot use fixpoint iteration, since we would need to start with a
“strategy defined everywhere” and remove all cases where it actually does not win, which
would not work with this construction. However, we can cheat and actually compute
the set where νX.φ holds using the set semantics, then substitute X appropriately and
compute the winning strategy under this assumption. Since opponent moves in νX.φ
case, this is outside of the control of our winning strategy anyway.

3.4. AN EXAMPLE STRATEGY 21

3.4. An example strategy

To make these abstract definitions clearer, let’s investigate an example. We are given
the LTS in fig. 3.1.

0 1:q 2

Figure 3.1. Example LTS.

The formula we want to check is “q is reachable infinitely often”, a fairness condition
as presented in section 1.7:

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y
We rewrite this into a system of equations which looks like:

(1)
X

ν
= Y

Y
µ
= (q ∧ 〈a〉X) ∨ 〈a〉Y

Our model checker will then compute that the formula is satisfied for states 0 and 1
(obviously, we would be stuck forever in 2 if we ever entered it), and emits this certificate:

X 0 -> * |

X 1 -> * |

Y 0 -> * |

Y 1 -> * |

q 1 -> * |

(<a>X) 0 -> X 1 |

(<a>X) 1 -> X 1 |

(<a>Y) 0 -> Y 1 |

(<a>Y) 1 -> Y 1 |

q /\ (<a>X) 1 -> * |

(q /\ (<a>X)) \/ (<a>Y) 0 -> #2 |

(q /\ (<a>X)) \/ (<a>Y) 1 -> #1

Figure 3.2. Certificate for eq. (1) on fig. 3.1.

The variables X and Y correspond exactly to X and Y of eq. (1). In order to check
this strategy, we need to look at the cycles.

22 3. CERTIFICATION FOR µ-CALCULUS

X, 0 = 4

Y, 0 = 3

q /\ (<a>X) \/ (<a>Y), 0 = 0

(<a>Y), 0 = 0

Y, 1 = 3

q /\ (<a>X) \/ (<a>Y), 1 = 0

q /\ (<a>X), 1 = 0

q, 1 = 0 (<a>X), 1 = 0

X, 1 = 4

Figure 3.3. Run of the strategy shown in fig. 3.2.

It is instructive to trace the run of this strategy, which can be seen in fig. 3.3. Say,
we want to prove the formula holds for the state 0. We start at (X, 0) (which has priority
4). Since X is a ν-formula, it’s opponent’s turn. There is only one move, to (Y, 0) with
priority 3. We keep playing the game until we reach the node (q ∧ (〈a〉X), 1), where
opponent decides how to move next. If he chooses (q, 1), we have won immediately since
the only move from (q, 1) is to (q, 1) again, and (q, 1) has priority 0, which is even. What
happens when opponent moves to (〈a〉X, 1) instead? We continue playing until we reach
(Y, 1) again, finding a cycle. The node with the largest priority in this cycle is (X, 1),
which has priority 4. It is even as well, thus we win the game, no matter how opponent
plays. We have shown that fig. 3.2 is indeed a winning strategy.

Since we reached (X, 1) as well during this trace, we have also shown that the formula
holds for state 1.

3.5. Checking strategies

Given a partial winning strategy Σ, we want to verify whether it is correct: that is,
it wins the parity game starting from the game positions (φ, s) for all states s ∈ S where
φ actually holds.

Therefore, we need to check whether the parity game winning conditions are true:
the highest priority of every position visited infinitely often must be even.

3.7. SIMPLE, RECURSIVE CHECKING OF STRATEGIES 23

3.6. The move relation

We consider the relation (φ, s) (φ′, s′) of moves in the parity game that are taken
by the strategy Σ. In particular, Σ decides which side to take when seeing φ1 ∨ φ2 and
where to move to when seeing 〈a〉:

(µX.φ, s) (φ, s)

(νX.φ, s) (φ, s)

(X, s) (X, s)

(p, s) (p, s)

(¬p, s) (¬p, s)
(φ1 ∨ φ2, s) (φΣ(φ1∨φ2,s), s)

(〈a〉φ, s) (φ,Σ(〈a〉φ, s))
(φ1 ∧ φ2, s) (φ1, s)

(φ1 ∧ φ2, s) (φ2, s)

([a]φ, s) (φ, s′) ∀s a−→ s′

Due to the nature of the strategy, is uniquely defined for the moves of the proponent,
and contains all possible moves for the opponent.

In order to simplify the arguments below, whenever Σ is not defined, we move to a
distinguished node ⊥ for admitting failure (⊥ can be modelled as a variable corresponding
to the empty set):

(φ1 ∨ φ2, s) (⊥, s) if (φ1 ∨ φ2, s) /∈ dom(Σ)

(〈a〉φ, s) (⊥, s) if (〈a〉φ, s) /∈ dom(Σ)

(⊥, s) (⊥, s)
Ω(⊥) := 1

Thus, is a left-total relation for every partial winning strategy.
In order to verify the strategy, we need to compute the single source reflexive-transitive

closure ∗, starting from the formula and state (φ, s) to be checked. Then, we need to
look at all cycles (φi, si) (φi+1, si+1) · · · (φi, si) and compute their maximum
priority maxi Ω(si). When all cycles have even priority, the formula φ holds at s, when
one cycle has odd priority, φ does not hold at s.

3.7. Simple, recursive checking of strategies

A simple, albeit inefficient way to check this is to enumerate all possible cycles that
can happen in the game, and check their highest priority. This can be implemented as a
simple recursive traversal, as can be seen in Algorithm 1.

This algorithm has the benefit of being on the fly, i.e. no precomputation of the graph
is required. We only need to keep track of the current position and be able to generate
the possible next moves (which are given by). This saves memory usage during checks,
and is more efficient if we find a counterexample quickly.

24 3. CERTIFICATION FOR µ-CALCULUS

Algorithm 1 Pseudo-code for simple, recursive checking.

function check(φ : Φ, s : S) → boolean:
findloop(φ, s,∅)

function findloop(φ : Φ, s : S, V ⊆ S) → boolean:
if (φ, s) ∈ V then

checkloop(φ, s, φ, s,Ω(φ, s),∅)
else

for all (φ, s) (φ′, s′):
findloop(φ′, s′, V ∪ {(φ′, s′)})

function checkloop(φ : Φ, s : S, φ∗ : Φ, s∗ : S, h : integer, V ⊆ S) → boolean:
if (φ, s) ∈ V then

if φ = φ∗ ∧ s = s∗ then
return h ≡ 0 mod 2

else
return true (Not the loop we are interested in.)

else
for all (φ, s) (φ′, s′):

checkloop(φ′, s′, φ∗, s∗,max{h,Ω(φ′, s′)}, V ∪ {(φ′, s′)})

However, all approaches trying to enumerate the cycles cannot run in polynomial
time since there can be exponentially many cycles, e.g. consider the “braid graph” shown
in fig. 3.4. With each additional “twist”, the number of cycles doubles.

0

2 3

4 5

6 7

1

Figure 3.4. Braid graph with 3 “twists”.

3.9. GENERATING COUNTEREXAMPLES 25

3.8. Efficient checking of strategies with strongly connected components

For an efficient strategy checker, we can use strongly connected components (SCCs).
In a strongly connected component of a graph, each node is reachable from every other
node. Thus every node is on a cycle, and therefore reachable infinitely often. If the
highest priority of a node in a SCC is odd, the strategy failed. If it is even, we need to
check further, because it could be that we don’t visit this even node infinitely often, but
instead a lower, odd one. Thus, we remove this even node from the graph, recompute
the SCCs and recurse.

In particular, the problem is similar to determining non-emptiness of a Streett
automaton. Generally, a Streett automaton is a non-deterministic ω-automaton with a
finite set of states Q, an alphabet Σ, a transition relation ∆ : Q× Σ×Q, initial states
Q0 ⊆ Q and an acceptance condition, a family of pairs of sets (Ei, Fi). The acceptance
condition holds when for every element of Ei that appears infinitely often in the word,
an element of the according Fi occurs infinitely often as well.

We shall consider Q = V, Σ ⊂ N, ∆ according to the possible move relation
 and Q0 = {(φ, s) |φ holds at s}. Then, together with the acceptance condition
{({n}, {m |m odd, n < m < Ωmax + 1}) |n even} this matches all runs that satisfy the
winning condition: When the highest recurrent priority h is even, ({h}, {h+ 1, . . . }) must
be violated and the automaton does not accept. Thus, if the automaton is non-empty,
its acceptance condition is violated and the strategy has been wrong.

One particularly suitable algorithm for this purpose is described in Duret-Lutz,
Poitrenaud, and Couvreur [9] (originating from [8]), which is on the fly as well. It
uses a variant of Dijkstra’s algorithm for detecting strongly connected components [7,
Chapter 25].

This algorithm works as follows [27]: During a depth-first search of the graph, we
keep a stack of strongly connected components that have been found. Upon finding an
edge back into a SCC that closes a cycle, we merge all SCC that are part of the cycle,
since using the cycle we can now move from every SCC into any other, i.e. their union is
actually one SCC.

This approach is beneficial for emptiness checks, because it traverses the SCC in a
depth-first manner as well, allowing for an on the fly emptiness check by keeping a list of
nodes to be “avoided” when counting down the priorities. Due to the avoidance (which
is, effectively, the removal of vertices from the SCC), a single SCC can decompose into
multiple, smaller SCC that used to be connected via the avoided node. Due to the nature
of the algorithm, we know that these “sub”-SCC are unaffected by nodes visited later,
and thus can be visited right away, and then again be forgotten.

3.9. Generating counterexamples

When model checking is applied in the real world, one benefit during development
is that the user not only sees whether the specifications hold or not, but it is also
possible to compute a specific counterexample which refutes the formula. Often, these
counterexamples can be used to find bugs—either in the program, or in the specification.

Winning strategies can also be used to generate counterexamples: Given a formula φ
which does not hold at a state s of the LTS, we can compute the dual formula φ∗ (as
defined below), which does hold at s (because of the determinacy of parity games), and

26 3. CERTIFICATION FOR µ-CALCULUS

the winning strategy for φ∗ tells us why. The dual formula can be seen as the negation
of φ computed using an extension of De Morgan’s laws for µ-calculus.

p∗ = ¬p
(¬p)∗ = p

X∗ = X

(φ1 ∧ φ2)∗ = φ∗1 ∨ φ∗2
(φ1 ∨ φ2)∗ = φ∗1 ∧ φ∗2

([a]φ)∗ = 〈a〉φ∗

(〈a〉φ)∗ = [a]φ∗

(µX.φ)∗ = νX.φ∗

(νX.φ)∗ = µX.φ∗

3.10. Verification of counterexamples

When the partial strategy is undefined for a certain formula at a given position,
checking fails immediately. This implies that a formula can hold, but the winning strategy
is incomplete (for which reasons whatsoever), and therefore the checker thinks it does not
hold. Thus, by default a check only verifies that when a formula holds, it really holds. In
order to check a formula really does not hold, we need to check that the negation of the
formula really holds.

3.11. Complexity analysis

Generally, satisfiability for µ-calculus is EXPTIME-complete [12].
Given a fixed formula φ and state space S, the strategy can be computed in polyno-

mial time. The size of a single partial winning strategy is bound by O(|S| · |φ| · log(|S|)),
since we have for every state s ∈ S at most |φ| subformulae where the strategy can be
defined. In case the strategy needs to choose a move, we need log(|S|) bits to specify the
successor state. The recursion depth of the fixpoint iteration is bounded by O(|φ|), due
to the number of quantifiers. Since fixpoint iteration does not require keeping more than
the last iteration state, we get a space bound of O(|S| · log(|S|) · |φ|2).

Verification of the winning strategies can be done in low polynomial time, when using
the approach with SCC. By using a variant of Dijkstra’s algorithm [7, Chapter 25] for
finding SCC, which runs in linear time—precisely O(|V |+ |E|)—, the algorithm proposed
by Duret-Lutz, Poitrenaud, and Couvreur [9] runs linear in the number of transitions
multiplied with the number of acceptance pairs.

In our application, the parity game graph for a formula φ and a set of states S
has O(|S| · |φ|) vertices (where |φ| is the length of the formula φ, and linear in the
size of the Fischer-Ladner closure, which is a superset of all formulae that can appear
as a state formula [32]), but since each node can have at most |S| outbound edges at
most O(|S|2 · |φ|) edges. The number of acceptance pairs is linear to the number of
quantifiers used in φ, which is linear in |φ| as well. Thus, we get a total time complexity
of O(|S|2 · |φ|2) for verifying a winning strategy.

CHAPTER 4

Implementation and optimization

4.1. Implementation

Micromu is implemented as an OCaml 4.01 program totaling up to about 1200 lines
of code, with no additional external dependencies. It only uses standard data structures
like sets and maps. Details on how to use it can be found in Appendix A.

The implementation is mostly straight-forward from the exposition earlier. Systems
of equations are used to avoid memory allocation during fixpoint iteration. On the
fly checking avoids materializing the parity game in memory. Therefore, Micromu
performance is CPU-bound. There is currently no support for parallelism.

The implementation tries to be modular and consists of six parts: µ-calculus formulae,
LTS, winning strategies, the simple checker, the efficient checker, and the main driver.

µ-calculus formulae are represented using a simple algebraic data type that represents
the syntax as given in definition 1.2. Using the on-board tools ocamllex and ocamlyacc,
we have implemented a parser for the textual syntax (details about this in appendix A.3).
The µ-calculus module also can convert between plain formulae and their representation
as system of equations and vice versa (section 1.5), as well as compute the set semantics
as shown in section 1.4.

The LTS module represents labelled transition systems. States are numbered, and
transitions are stored as sets of integer pairs, indexed by their action. Again, there is a
parser to read LTS from text files (see appendix A.2 for the format used).

Winning strategies are kept abstract, only exposing an assoc function to look up a
possible move given a model and particular state. Computation of winning strategies
happens by fixpoint iteration using a recursive function, just like presented in section 3.3.

Since there are two different checkers, we have introduced an interface to ensure
they are exchangeable. We have implemented the simple strategy checker as well as an
efficient, polynomial-time checker using Streett automata.

Finally, everything is connected using the main driver, which parses the command line
arguments, reads data structures, and then computes the winning strategy and verifies it
with one of the checkers.

4.2. Optimization of checking

The simple, recursive checker—albeit having exponential runtime in worst case—
works pretty well. When verifying a property for many states, it often recomputes many
steps needlessly, thus caching of these results (nodes known as “good” or “bad”) was
implemented and the algorithm can terminate early upon finding such a node.

The SCC-based algorithm does not need this because it checks all states at once. It
has, however, more overhead than the simple checker and is often slower.

27

28 4. IMPLEMENTATION AND OPTIMIZATION

4.3. Optimization of the implementation

No special considerations for performance have been taken during the initial imple-
mentation of Micromu. Once the program worked, the OCaml profiler [21, Chapter 17]
was used for execution count profiling to determine hotspots in the code. Additionally,
Linux perf [34] provided useful information about the OCaml runtime and was used for
time profiling.

Micromu uses sets of integers heavily (for sets of states of a LTS), as well as sets
of pairs of integers (for relations). By default, OCaml uses polymorphic compare for
these (known as compare_val in the runtime) which is very expensive in relation to
simply comparing a integer tuple. Specializing these data structures and providing a
monomorphic comparison resulted in a major speedup.

During development, representing winning strategies as association lists proved to be
useful for debugging, but the cost of linear lookup as well as accumulation of unreachable
elements is prohibitive for actual use. Winning strategies are now implemented as simple
maps, which guarantees efficient lookup and cheap merging.

4.4. Benchmarks

We provide three benchmarks that give insight into the algorithms at work.

Table 1. Runtimes on a AMD Phenom II X4 920 (2.80 GHz)

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Flower 8 16 0.179 0.203 0.009 0.040
Flower 10 20 3.166 1.960 0.071 0.419
Flower 12 24 32.269 11.688 0.287 2.061
Flower 14 28 320.931 61.733 1.298 10.829
Flower 16 32 3196.043 326.666 6.131 58.871

Circle 100 100 0.003 0.001 0.001 0.001
Circle 1000 1000 0.109 0.018 0.005 0.006

Circle 10000 10000 15.763 3.398 0.054 0.057
Circle 100000 100000 2027.584 811.041 0.581 0.582

Braid 6 12 0.001 0.005 1.282 0.009
Braid 8 16 0.002 0.003 31.062 0.013

Braid 10 20 0.002 0.006 711.002 0.020
Braid 100 200 0.663 0.993 — 3.674

G1 15 34.862 79.342 0.050 1.538

The “Flower” benchmark is a parity game (from Buhrke, Lescow, and Vöge [4])
translated into a µ-calculus formula, which shows the exponential complexity of deciding
µ-calculus. However, the certificates can be checked in polynomial time.

4.4. BENCHMARKS 29

Figure 4.1. “Flower” with n = 8. (Illustration taken from [4].)

The “Circle” benchmark measures the overhead of the algorithms. It consists of a
single cycle that needs to be traversed to check for a property. In this case, runtime is
linear, and checking is very fast.

0

1

2

3

4

5

6

7

8

9 : q

Figure 4.2. “Circle” with n = 10.

The “Braid” benchmark focuses on checking complexity. This family of graphs has
exponentially many cycles (see page 24), thus the simple checker requires exponential
time. The SCC algorithm is not affected and checks these graphs in linear time.

0

2 3

4 5

6 7

1

Figure 4.3. “Braid” with n = 4.

In his PhD thesis, Oliver Friedmann suggests a family Gn of parity games which have
exponential behavior [17]. Only the first one is tractable with the current implementation.
Calculation of G2 has been aborted after several days of computation.

CHAPTER 5

Perspectives

5.1. Summary of the work

We have shown how to implement a model checker for µ-calculus that certifies its
results using winning strategies, which are computed by fixpoint iteration in a straight-
forward manner.

In order to do this, we have shown the algorithms of Hofmann and Rueß [19] to be
viable and improved upon them: the use of systems of equations not only makes our
implementation run without consuming memory for formula representation at all, but
also simplifies the specification of fixpoint iteration a lot.

Further, we have implemented two checkers for these winning strategies, one which
is simple to understand but has worst-case exponential complexity, and one based on
strongly connected components and emptiness of Streett automata (which has been
proposed in [19] without further detail). Both have the benefit of being on the fly and
are thus suitable for larger models as well as symbolic approaches.

5.2. Further possible optimizations

Micromu has been written as a prototype model checker for experimenting with
winning strategies, not as an industrial-strength tool aimed at high performance. Only
asymptotic algorithmic performance improvements have been considered.

For simplicity and clarity, many techniques well-known in the model checking world
are not implemented, such as the use of binary decision diagrams, incremental construction
of transitions, forward analysis, and frontier set simplification. These all are possible to
use in µ-calculus model checkers and have been successfully implemented [3, 2].

An interesting way to make computation of winning strategies more efficient would
be to use a general-purpose fixpoint solver that can use sophisticated algorithms and
heuristics to optimize the µ- and ν-cases of the algorithm. There are fixpoint solvers
which work on arbitrary lattices, however, the exact construction of a lattice representing
partial winning strategies remains an open problem.

Instead of making Micromu a full-fledged model checker, it may be more reasonable to
instrument a more advanced implementation of µ-calculus to compute winning strategies
as well.

5.3. Formal verification

As mentioned in the preface, having a formal proof of the strategy checker will result
in a verified model checker for µ-calculus.

Since strategy checking should run in polynomial time, an algorithm similar to
the SCC-based one will have to be implemented and verified. Unfortunately, the SCC

31

32 5. PERSPECTIVES

algorithm as used is quite complex when expressed as a functional program. Perhaps
the model checker could compute these SCC as part of strategy computation, reducing
further verification effort.

 Coq checker

Micromu

proof

certificate

theory

coqchk

proof
obligation

check
of proof

Figure 5.1. Possible future Micromu workflow.

Figure 5.1 shows how we imagine a future workflow using Micromu: again, we are
in a setting like fig. 1.4. However, the model checker is still an external tool. Coq calls
it, passing appropriate transcriptions of the model and µ-formula in question. Then,
Micromu computes the certificate, which is verified by the strategy checker, that runs
inside Coq. It checks the computed strategy and emits a proof term, which again can be
checked separately using coqchk to guarantee everything is correct.

5.4. Comparison to verified model checkers

Esparza et al. [15] have implemented and formally verified a LTL checker named
CAVA in Isabelle/HOL. It is meant to be used as a standalone model checker, and not as
a proof tactic. They recognize implementing a full model checker is more work than just
verifying a strategy checker, but claim not requiring potentially large certificates to their
advantage. Indeed, certificate size can be problematic, especially with a large state space.

Compression of winning strategies could be an interesting area for further research.
In particular, techniques from BDD-based symbolic model checking could be used to
optimize storage and manipulation of winning strategies and their domains.

SMC, by Verma [35], is an implementation of a BDD library and a complete symbolic
µ-calculus model checker for Coq. It computes proofs by reflection into proof terms and
thus does not require a separate certification step. This can be seen as an advantage, but
it also means the implementation is harder to optimize, while keeping the correctness
proof.

APPENDIX A

Appendix: Using Micromu

A.1. Command line arguments

Micromu is used as a simple command line program. It requires two arguments, a
file containing the LTS and a file containing the µ-calculus formula to be checked. An
optional parameter -c can be passed as a first argument to compute a counterexample
as explained in section 3.9.

When run, Micromu will output copious information. First, the formula is rewritten
as a system of equations, which is printed. Then, set semantics of the formula are
computed and the result outputted. Next, strategy semantics is computed and the
winning strategy gets printed. Finally, the verifier checks the strategy and prints whether
verification has passed or not.

To the casual user, only the last two lines of output matter: the result and whether
it is correct.

With the command line flag -s, the SCC-based strategy checker from section 3.8 can
be enabled. By default, the simple strategy checker (section 3.7) is used.

With the command line flag -d, the strategy run is output as a Graphviz dot(1) file
[10] (this will look like fig. 3.3).

A.2. LTS file format

Micromu reads LTS in a format which is a variant of Aldebaran syntax [16, 5].
An LTS file starts with a header line of using the following syntax:

des (initial-state ,number-of-transitions ,number-of-states)

Next, there is one line per transition, in arbitrary order. Each line has the following
syntax:

(from-state ,"label ",to-state)

Finally (and as extension to Aldebaran format), you can specify the atomic proposi-
tions, one per line:

"prop ",state

Lines starting with # are ignored.

33

34 A. APPENDIX: USING MICROMU

For example:

des (0,4,3)

(0,"a",1)

(1,"a",1)

(1,"b",2)

(2,"a",2)

"q",1

"p",2

0 1:qa

a

2:pb

a

A.3. MU file format

Mu formula files contain an ASCII-fied representation of the syntax presented in
definition 1.2. Lines starting with # are ignored. Variables start with uppercase letters,
propositions with lowercase letters.

For example, the formula G1 from the benchmark:

mu Z20. mu Z18. nu Z17. nu Z15. mu Z14. mu Z12. mu Z10.

nu Z9. mu Z8. nu Z7. mu Z6. mu Z4. nu Z3. mu Z2. nu Z1.

(y0 /\ x20 /\ <a>Z20) \/ (y0 /\ x18 /\ <a>Z18) \/ (y0 /\ x17 /\ <a>Z17) \/

(y0 /\ x15 /\ <a>Z15) \/ (y0 /\ x14 /\ <a>Z14) \/ (y0 /\ x12 /\ <a>Z12) \/

(y0 /\ x10 /\ <a>Z10) \/ (y0 /\ x9 /\ <a>Z9) \/ (y0 /\ x8 /\ <a>Z8) \/

(y0 /\ x7 /\ <a>Z7) \/ (y0 /\ x6 /\ <a>Z6) \/ (y0 /\ x4 /\ <a>Z4) \/

(y0 /\ x3 /\ <a>Z3) \/ (y0 /\ x2 /\ <a>Z2) \/ (y0 /\ x1 /\ <a>Z1) \/

(y0 /\ x20 /\ [a]Z20) \/ (y0 /\ x18 /\ [a]Z18) \/ (y0 /\ x17 /\ [a]Z17) \/

(y0 /\ x15 /\ [a]Z15) \/ (y0 /\ x14 /\ [a]Z14) \/ (y0 /\ x12 /\ [a]Z12) \/

(y0 /\ x10 /\ [a]Z10) \/ (y0 /\ x9 /\ [a]Z9) \/ (y0 /\ x8 /\ [a]Z8) \/

(y0 /\ x7 /\ [a]Z7) \/ (y0 /\ x6 /\ [a]Z6) \/ (y0 /\ x4 /\ [a]Z4) \/

(y0 /\ x3 /\ [a]Z3) \/ (y0 /\ x2 /\ [a]Z2) \/ (y0 /\ x1 /\ [a]Z1)

Table 1. Transcription rules for Micromu formulae.

Formula ASCII representation

〈a〉 <a>

[a] [a]

a ∧ b a /\ b or a && b

a ∨ b a \/ b or a || b

¬a ~a

µX.a mu X.a

νX.a nu X.a

APPENDIX B

Appendix: Micromu Source Code

B.1. Labelled transition systems

Listing B.1. lts.ml
module States = Set.Make(struct

type t = int

let compare a1 a2 = a1 - a2

end)

module Actions = Map.Make(String)

type action = Actions.key

module Props = Map.Make(String)

type prop = Props.key

type state_set = States.t

type state = States.elt

module StateState = Set.Make(struct

type t = int * int

let compare (a1,b1) (a2,b2) = if a1 = a2 then b1 - b2 else a1 - a2

end)

type t = {

states: state_set;

by_action: StateState.t Actions.t;

by_prop: States.t Props.t

}

let empty _ = States.empty

let all_states t = t.states

let rec gather_states = function

| [] -> States.empty

| (_,s,t)::xs -> States.add t @@ States.add s @@ gather_states xs

let rec group_states = function

| [] -> Actions.empty

35

36 B. APPENDIX: MICROMU SOURCE CODE

| (a,s,t)::xs ->

Actions.merge (fun _ left right ->

match left, right with

| Some l, Some r -> Some (StateState.union l r)

| Some l, None -> Some l

| None, Some r -> Some r

| None, None -> None

) (group_states xs) (Actions.singleton a (StateState.singleton (s,t)))

let rec group_props = function

| [] -> Props.empty

| (a,s)::xs ->

Actions.merge (fun _ left right ->

match left, right with

| Some l, Some r -> Some (States.union l r)

| Some l, None -> Some l

| None, Some r -> Some r

| None, None -> None

) (group_props xs) (Props.singleton a (States.singleton s))

let add_default_props lts =

{ lts with

by_prop =

Props.add "false" (empty lts) @@

Props.add "true" (all_states lts) lts.by_prop }

let from_lists l p : t =

add_default_props

{ states = gather_states l;

by_action = group_states l;

by_prop = group_props p }

let prop_true lts prop =

Props.find prop lts.by_prop

let prop_false lts prop =

States.diff (all_states lts) (prop_true lts prop)

let pre lts a set =

let actions = Actions.find a lts.by_action in

States.filter (fun s ->

States.exists (fun t -> StateState.mem (s,t) actions) set) (all_states lts)

let pre’ lts a set =

let actions = Actions.find a lts.by_action in

States.filter (fun s ->

States.for_all (fun t ->

(not (StateState.mem (s,t) actions)) || States.mem t set)

(all_states lts)) (all_states lts)

B.2. µ-CALCULUS FORMULAE 37

let succ lts a s =

let actions = Actions.find a lts.by_action in

States.filter (fun t -> StateState.mem (s,t) actions) (all_states lts)

B.2. µ-calculus formulae

Listing B.2. mu.mli
open Lts

type var = string

type props = string

type mu_form =

| X of var

| P of props

| NotP of props

| Box of action * mu_form

| Diamond of action * mu_form

| Conj of mu_form * mu_form

| Disj of mu_form * mu_form

| Mu of var * mu_form

| Nu of var * mu_form

val negate : mu_form -> mu_form

val pretty : mu_form -> string

type env

val empty_env : env

val subst : env -> var -> state_set -> env

val lookup : env -> var -> state_set option

type mu_map_form

type munu = MU | NU

val study : mu_form -> mu_form * mu_map_form

val unmmf : mu_map_form -> mu_form -> mu_form

val lookup_mmf : mu_map_form -> var -> (munu * int * mu_form) option

val pretty_mmf : mu_map_form -> string

val sem : Lts.t -> mu_map_form -> mu_form -> env -> state_set

Listing B.3. mu.ml
type var = string

type props = string

type mu_form =

| X of var

| P of props

38 B. APPENDIX: MICROMU SOURCE CODE

| NotP of props

| Box of Lts.action * mu_form

| Diamond of Lts.action * mu_form

| Conj of mu_form * mu_form

| Disj of mu_form * mu_form

| Mu of var * mu_form

| Nu of var * mu_form

type truth = Lts.state -> props -> bool

module VarMap = Map.Make(String)

type munu = MU | NU

type mu_map_form = (munu * int * mu_form) VarMap.t

type env = Lts.state_set VarMap.t

let empty_env = VarMap.empty

let rec pretty = function

| X v -> v

| P p -> p

| NotP p -> "~" ^ p

| Box (a, f) -> Printf.sprintf "([%s]%s)" a (pretty f)

| Diamond (a, f) -> Printf.sprintf "(<%s>%s)" a (pretty f)

| Conj (f1, f2) -> Printf.sprintf "%s /\\ %s" (pretty f1) (pretty f2)

| Disj (f1, f2) -> Printf.sprintf "%s \\/ %s" (pretty f1) (pretty f2)

| Mu (v, f1) -> Printf.sprintf "mu %s. %s" v (pretty f1)

| Nu (v, f1) -> Printf.sprintf "nu %s. %s" v (pretty f1)

let subst eta x u =

VarMap.add x u eta

let lookup eta x =

try Some (VarMap.find x eta)

with Not_found -> None

let lookup_mmf mmf x =

try Some (VarMap.find x mmf)

with Not_found -> None

let study (f : mu_form) : (mu_form * mu_map_form) =

let rec add f depth mmf = match f with

| X _ | P _ | NotP _ -> (f, mmf)

| Box (a, f) ->

let f’, mmf’ = add f (depth+1) mmf in

(Box (a, f’), mmf’)

| Diamond (a, f) ->

B.2. µ-CALCULUS FORMULAE 39

let f’, mmf’ = add f (depth+1) mmf in

(Diamond (a, f’), mmf’)

| Conj (f1, f2) ->

let f’, mmf’ = add f1 (depth+1) mmf in

let f’’, mmf’’ = add f2 (depth+1) mmf’ in

(Conj (f’, f’’), mmf’’)

| Disj (f1, f2) ->

let f’, mmf’ = add f1 (depth+1) mmf in

let f’’, mmf’’ = add f2 (depth+1) mmf’ in

(Disj (f’, f’’), mmf’’)

| Mu (v, f1) ->

let f’, mmf’ = add f1 (depth+1) mmf in

let mmf’’ = VarMap.add v (MU, depth, f’) mmf’ in

(X v, mmf’’)

| Nu (v, f1) ->

let f’, mmf’ = add f1 (depth+1) mmf in

let mmf’’ = VarMap.add v (NU, depth, f’) mmf’ in

(X v, mmf’’)

in

add f 1 VarMap.empty

let unmmf mmf =

let rec unmmf’ d = function

| X v ->

(match lookup mmf v with

| Some (MU, d’, f) when d < d’ -> Mu (v, unmmf’ d’ f)

| Some (NU, d’, f) when d < d’ -> Nu (v, unmmf’ d’ f)

| _ -> X v)

| Box (a, f1) -> Box (a, unmmf’ d f1)

| Diamond (a, f1) -> Diamond (a, unmmf’ d f1)

| Conj (f1, f2) -> Conj (unmmf’ d f1, unmmf’ d f2)

| Disj (f1, f2) -> Disj (unmmf’ d f1, unmmf’ d f2)

| x -> x

in

unmmf’ 0

let pretty_mmf mmf =

String.concat "" @@

VarMap.fold (fun k (q,d,f) l ->

l @ [Printf.sprintf "%s =%s/%d= %s\n"

k

(match q with | MU -> "mu" | NU -> "nu")

d

(pretty f)]) mmf []

40 B. APPENDIX: MICROMU SOURCE CODE

let rec negate = function

| X v -> X v

| P p -> NotP p

| NotP p -> P p

| Box (a, f) -> Diamond (a, negate f)

| Diamond (a, f) -> Box (a, negate f)

| Conj (f1, f2) -> Disj (negate f1, negate f2)

| Disj (f1, f2) -> Conj (negate f1, negate f2)

| Mu (v, f1) -> Nu (v, negate f1)

| Nu (v, f1) -> Mu (v, negate f1)

let rec sem lts mmf (f : mu_form) (eta : env) : Lts.state_set =

match f with

| X v ->

(match lookup eta v with

| Some x -> x

| None ->

match lookup mmf v with

| Some (MU, _, f) -> sem_iter lts mmf v f eta (Lts.empty lts)

| Some (NU, _, f) -> sem_iter lts mmf v f eta (Lts.all_states lts)

| None -> failwith ("unbound variable "^v))

| Conj (f1, f2) -> Lts.States.inter (sem lts mmf f1 eta) (sem lts mmf f2 eta)

| Disj (f1, f2) -> Lts.States.union (sem lts mmf f1 eta) (sem lts mmf f2 eta)

| Box (a, f) -> Lts.pre’ lts a (sem lts mmf f eta)

| Diamond (a, f) -> Lts.pre lts a (sem lts mmf f eta)

| P p -> Lts.prop_true lts p

| NotP p -> Lts.prop_false lts p

and sem_iter lts mmf x f eta u =

let u_p = sem lts mmf f (subst eta x u) in

if Lts.States.equal u u_p

then u

else

(

Printf.eprintf "%d -> %d\n%!" (Lts.States.cardinal u)

(Lts.States.cardinal u_p);

sem_iter lts mmf x f eta u_p

)

B.3. PARTIAL WINNING STRATEGIES 41

B.3. Partial winning strategies

Listing B.4. strat.mli
open Mu

open Lts

type ext_state =

| Step of (mu_form * state)

| One

| Two

| Star

type partial_strat

val pretty : ?sep:string -> partial_strat -> string

val assoc : mu_form * state -> partial_strat -> ext_state option

val sem : Lts.t -> mu_map_form -> mu_form -> env -> partial_strat

Listing B.5. strat.ml
open Mu

type ext_state =

| Step of (mu_form * Lts.state)

| One

| Two

| Star

module PartialStrat = Map.Make(struct

type t = mu_form * Lts.state

let compare = compare

end)

type partial_strat = ext_state PartialStrat.t

let (+++) st1 st2 =

PartialStrat.merge (fun _ left right ->

match left, right with

| Some l, Some _ -> Some l

| Some l, None -> Some l

| None, Some r -> Some r

| None, None -> None) st1 st2

let (++) st (k, v) =

if PartialStrat.mem k st

then st

else PartialStrat.add k v st

42 B. APPENDIX: MICROMU SOURCE CODE

let empty_strat =

PartialStrat.empty

let dom s = List.map fst (PartialStrat.bindings s)

let in_dom k s = PartialStrat.mem k s

let states_by_form f s = List.map snd @@ List.filter (fun (f’, _) -> f = f’) s

let rec states_from_list = function

| x :: xs -> Lts.States.add x (states_from_list xs)

| [] -> Lts.States.empty

let pretty_ext_state = function

| Step (f, s) -> Printf.sprintf "%s %d" (Mu.pretty f) s

| One -> "#1"

| Two -> "#2"

| Star -> "*"

let pretty ?(sep=" | ") st = String.concat sep @@

List.map (fun ((f, s), t) ->

Printf.sprintf "%s %d -> %s" (Mu.pretty f) s (pretty_ext_state t))

(PartialStrat.bindings st)

let assoc (f,s) st =

try Some (PartialStrat.find (f,s) st)

with Not_found -> None

(* extensional equality of two partial strategies. *)

let strat_ext_eq st1 st2 =

PartialStrat.equal (=) st1 st2

(* merge st1 and st2, keeping the domain of st2 but the values of st1. *)

let strat_merge st1 st2 =

PartialStrat.merge (fun _ left right ->

match left, right with

| Some l, Some _ -> Some l

| Some _, None -> None

| None, Some r -> Some r

| None, None -> None) st1 st2

let string_of_set s =

Lts.States.fold (fun e a -> a ^ " " ^ string_of_int e) s ""

let rec sem lts mmf (f : mu_form) (eta : env) : partial_strat = match f with

| P p -> Lts.States.fold (fun s strat -> strat ++ ((P p, s), Star))

(Lts.prop_true lts p) empty_strat

| NotP p -> Lts.States.fold (fun s strat -> strat ++ ((NotP p, s), Star))

(Lts.prop_false lts p) empty_strat

B.3. PARTIAL WINNING STRATEGIES 43

| Conj (f1, f2) ->

let s1 = sem lts mmf f1 eta in

let s2 = sem lts mmf f2 eta in

s1 +++ s2 +++

Lts.States.fold (fun s strat ->

if in_dom (f1,s) s1 && in_dom (f2,s) s2

then strat ++ ((Conj (f1, f2), s), Star)

else strat) (Lts.all_states lts) empty_strat

| Disj (f1, f2) ->

let s1 = sem lts mmf f1 eta in

let s2 = sem lts mmf f2 eta in

s1 +++ s2 +++

List.fold_left (fun strat s ->

strat ++ ((Disj (f1, f2), s), One)

) empty_strat (states_by_form f1 (dom s1))

+++

List.fold_left (fun strat s ->

strat ++ ((Disj (f1, f2), s), Two)

) empty_strat (states_by_form f2 (dom s2))

| Box (a, f1) ->

let s1 = sem lts mmf f1 eta in

let actions = Lts.Actions.find a lts.Lts.by_action in

s1 +++

Lts.States.fold (fun s strat ->

if Lts.StateState.for_all (fun (ss,s’) ->

s <> ss || in_dom (f1,s’) s1) actions

then strat ++ ((Box (a, f1), s), Star)

else strat

) (Lts.all_states lts) empty_strat

| Diamond (a, f1) ->

let s1 = sem lts mmf f1 eta in

Printf.printf "Diamond says: %s\n" (pretty s1);

let actions = Lts.Actions.find a lts.Lts.by_action in

let domain = states_from_list (states_by_form f1 (dom s1)) in

let dst = Lts.StateState.filter (fun (_,s’) ->

Lts.States.mem s’ domain) actions in

s1 +++

Lts.StateState.fold (fun (s,s’) strat ->

strat ++ ((Diamond (a, f1), s), Step (f1, s’))) dst empty_strat

| X v ->

match lookup eta v with

| Some states ->

Lts.States.fold (fun s strat -> strat ++ ((X v, s), Star))

states empty_strat

| None ->

match lookup_mmf mmf v with

| Some (MU, _, f) -> mu_step lts mmf f eta v

| Some (NU, _, f) -> nu_step lts mmf f eta v

| None -> failwith ("unbound variable "^v)

44 B. APPENDIX: MICROMU SOURCE CODE

and mu_step lts mmf f eta v =

let rec step mmf eta prev =

Printf.printf "mu_step env %s:\n" v;

let eta’ = subst eta v (states_from_list (states_by_form f (dom prev))) in

(sem lts mmf f eta’), eta’

and iter mmf eta prev =

let next, eta’ = step mmf eta prev in

(* make them agree on the image *)

let next = strat_merge prev next in

if strat_ext_eq prev next

then next

else

(Printf.printf "strat %d -> %d\n%!"

(PartialStrat.cardinal prev) (PartialStrat.cardinal next);

iter mmf eta’ next)

in

iter mmf eta empty_strat

and nu_step lts mmf f eta v =

Printf.eprintf "f %s\n%!" (Mu.pretty f);

let u = cache_sem lts mmf (X v) eta in

Printf.printf "result: %s\n%!" (string_of_set u);

sem lts mmf f (subst eta v u)

and cache = Hashtbl.create 127

and cache_sem lts mmf f eta =

try

let r = Hashtbl.find cache (f) in

Printf.eprintf "CACHE HIT %s\n%!" (Mu.pretty f);

r

with Not_found ->

set_sem lts mmf f eta

and set_sem lts mmf (f : mu_form) (eta : env) : Lts.state_set =

let rec iter lts mmf x f eta u =

let u_p = set_sem lts mmf f (subst eta x u) in

if Lts.States.equal u u_p

then (Hashtbl.add cache (f) u; u)

else iter lts mmf x f eta u_p

in

match f with

| X v ->

(match lookup eta v with

| Some x -> x

| None ->

match lookup_mmf mmf v with

| Some (MU, _, f) -> iter lts mmf v f eta (Lts.empty lts)

B.5. SIMPLE STRATEGY CHECKER 45

| Some (NU, _, f) -> iter lts mmf v f eta (Lts.all_states lts)

| None -> failwith ("unbound variable "^v))

| Conj (f1, f2) -> Lts.States.inter (cache_sem lts mmf f1 eta)

(cache_sem lts mmf f2 eta)

| Disj (f1, f2) -> Lts.States.union (cache_sem lts mmf f1 eta)

(cache_sem lts mmf f2 eta)

| Box (a, f) -> Lts.pre’ lts a (cache_sem lts mmf f eta)

| Diamond (a, f) -> Lts.pre lts a (cache_sem lts mmf f eta)

| P p -> Lts.prop_true lts p

| NotP p -> Lts.prop_false lts p

B.4. Strategy checker interface

Listing B.6. checker intf.ml
module type Checker = sig

open Mu

open Strat

open Lts

val check : Lts.t -> mu_map_form -> partial_strat ->

state -> mu_form -> state_set * bool

val gendot : Lts.t -> mu_map_form -> partial_strat ->

state_set -> mu_form -> unit

end

B.5. Simple strategy checker

Listing B.7. checker.ml
open Mu

open Strat

let rec free v = function

| X v’ when v = v’ -> true

| Conj (f1, f2)

| Disj (f1, f2) -> free v f1 || free v f2

| Box (_, f1)

| Diamond (_, f1) -> free v f1

| Mu (v’, f1)

| Nu (v’, f1) when v != v’ -> free v f1

| _ -> false

let rec nd (f : mu_form) =

let rec nd’ v f =

if free v f then

match f with

| Conj (f1, f2)

| Disj (f1, f2) -> max (nd’ v f1) (nd’ v f2)

46 B. APPENDIX: MICROMU SOURCE CODE

| Box (_, f1)

| Diamond (_, f1) -> nd’ v f1

| Mu (_, f1)

| Nu (_, f1) -> max (nd f) (nd’ v f1)

| _ -> 0

else

0

in

match f with

| Mu (v, f1)

| Nu (v, f1) -> (nd’ v f1) + 1

| _ -> 0

let prio’ lts eta s = function

| Mu (v, f1) -> 2 * nd (Mu (v, f1)) + 1

| Nu (v, f1) -> 2 * nd (Nu (v, f1))

| P p -> if Lts.States.mem s (Lts.prop_true lts p) then 0 else 1

| NotP p -> if Lts.States.mem s (Lts.prop_false lts p) then 0 else 1

| X v -> (match lookup eta v with

| Some props -> if Lts.States.mem s props then 0 else 1

| None -> failwith ("prio: unbound variable " ^ v))

| _ -> 0

let prio lts mmf eta s f =

prio’ lts eta s (unmmf mmf f)

module MuStateSet = Set.Make(struct

type t = mu_form * Lts.state

let compare = compare

end)

let seen_states mu seen =

MuStateSet.fold (fun (mu’, s) states ->

if mu = mu’

then Lts.States.add s states

else states) seen Lts.States.empty

let check lts mmf st s f =

let rec trav seen maxprio s f =

Printf.printf "TRAV %s , %d , %s\n" (Mu.pretty f) s (match maxprio with

| Some (_,_,x) -> "maxprio " ^ string_of_int x ^

" here " ^ string_of_int (prio lts mmf empty_env s f)

| None -> "loop-search");

if MuStateSet.mem (f,s) seen

then

(match maxprio with

| None -> (* loop again, counting the maxprio this time. *)

trav MuStateSet.empty (Some (s, f, 0)) s f

| Some (s’, f’, prio) when s = s’ && f = f’ ->

B.5. SIMPLE STRATEGY CHECKER 47

if prio mod 2 = 0 then

seen_states f seen, true (* good case *)

else

seen_states f seen, false

| Some (_, _, _) ->

(* not the loop we are looking for *)

Lts.States.empty, true)

else

let maxprio’ = match maxprio with

| Some (s’,f’,maxprio) -> Some (s’,f’,max maxprio (prio lts mmf empty_env s f))

| None -> None

in

let seen’ = MuStateSet.add (f,s) seen in

match f, Strat.assoc (f,s) st with

| X v, Some Star ->

(match lookup_mmf mmf v with

| Some (MU, _, f) -> trav seen’ maxprio’ s f

| Some (NU, _, f) -> trav seen’ maxprio’ s f

| None -> failwith ("check.trav: unbound variable " ^ v))

| P _, Some Star -> trav seen’ maxprio’ s f

| NotP _, Some Star -> trav seen’ maxprio’ s f

| Disj (f1, _), Some One -> trav seen’ maxprio’ s f1

| Disj (_, f2), Some Two -> trav seen’ maxprio’ s f2

| Conj (f1, f2), Some Star ->

let s1, r1 = trav seen’ maxprio’ s f1 in

if not r1

then s1, false

else

let s2, r2 = trav seen’ maxprio’ s f2 in

Lts.States.union s1 s2, r2

| Box (a, f1), Some Star ->

Lts.States.fold (fun s’ (se’,r1) ->

let s’’, r’’ = trav seen’ maxprio’ s’ f1 in

if r1 == false

then (se’, false)

else (Lts.States.union se’ s’’, r’’))

(Lts.succ lts a s)

(Lts.States.empty, true)

| Diamond (a, f1), Some Step (_, s’) ->

if Lts.StateState.mem (s, s’) (Lts.Actions.find a lts.by_action)

then trav seen’ maxprio’ s’ f1

else (Lts.States.empty, false)

| Diamond _, _ ->

Lts.States.empty, false

| _, None ->

seen_states f seen’, false

in

trav MuStateSet.empty None s f

48 B. APPENDIX: MICROMU SOURCE CODE

let gendot lts mmf st s f =

let edge ?(take=true) f1 s1 f2 s2 =

let p1 = prio lts mmf empty_env s1 f1 in

let p2 = prio lts mmf empty_env s2 f2 in

Printf.printf

"\"%s, %d = %d\"[shape=%s]; \"%s, %d = %d\" -> \"%s, %d = %d\" [style=%s];\n"

(String.escaped (Mu.pretty f1)) s1 p1

(if p1 mod 2 == 0

then "box"

else "oval")

(String.escaped (Mu.pretty f1)) s1 p1

(String.escaped (Mu.pretty f2)) s2 p2

(if take

then "bold"

else "dotted")

in

let rec iter seen s f =

if not (MuStateSet.mem (f,s) seen) then

let seen’ = MuStateSet.add (f,s) seen in

match f, Strat.assoc (f,s) st with

| X v, Some Star ->

(match lookup_mmf mmf v with

| Some (MU, _, f1) -> edge f s f1 s; iter seen’ s f1

| Some (NU, _, f1) -> edge f s f1 s; iter seen’ s f1

| None -> failwith ("check.trav: unbound variable " ^ v))

| P _, Some Star -> edge f s f s; iter seen’ s f

| NotP _, Some Star -> edge f s f s; iter seen’ s f

| Disj (f1, f2), Some One -> edge f s f1 s;

edge ~take:false f s f2 s; iter seen’ s f1

| Disj (f1, f2), Some Two -> edge f s f2 s;

edge ~take:false f s f1 s; iter seen’ s f2

| Conj (f1, f2), Some Star ->

edge f s f1 s;

edge f s f2 s;

iter seen’ s f1;

iter seen’ s f2

| Box (a, f1), Some Star ->

Lts.States.iter

(fun s’ -> edge f s f1 s’; iter seen’ s’ f1)

(Lts.succ lts a s)

| Diamond (_, f1), Some Step (_, s’) -> edge f s f1 s’; iter seen’ s’ f1

| _, None -> ()

in

print_string "strict digraph {\n"; (* strict = don’t duplicate edges *)

Lts.States.iter (fun state ->

iter MuStateSet.empty state f) s;

print_string "}\n"

B.6. STREETT-AUTOMATON STRATEGY CHECKER 49

B.6. Streett-automaton strategy checker

Listing B.8. streett.ml
open Mu

open Strat

let rec free v = function

| X v’ when v = v’ -> true

| Conj (f1, f2)

| Disj (f1, f2) -> free v f1 || free v f2

| Box (_, f1)

| Diamond (_, f1) -> free v f1

| Mu (v’, f1)

| Nu (v’, f1) when v != v’ -> free v f1

| _ -> false

let rec nd (f : mu_form) =

let rec nd’ v f =

if free v f then

match f with

| Conj (f1, f2)

| Disj (f1, f2) -> max (nd’ v f1) (nd’ v f2)

| Box (_, f1)

| Diamond (_, f1) -> nd’ v f1

| Mu (_, f1)

| Nu (_, f1) -> max (nd f) (nd’ v f1)

| _ -> 0

else

0

in

match f with

| Mu (v, f1)

| Nu (v, f1) -> (nd’ v f1) + 1

| _ -> 0

let prio’ lts eta s = function

| Mu (v, f1) -> 2 * nd (Mu (v, f1)) + 1

| Nu (v, f1) -> 2 * nd (Nu (v, f1))

| P p -> if Lts.States.mem s (Lts.prop_true lts p) then 0 else 1

| NotP p -> if Lts.States.mem s (Lts.prop_false lts p) then 0 else 1

| X v -> (match lookup eta v with

| Some props -> if Lts.States.mem s props then 0 else 1

| None -> failwith ("prio: unbound variable " ^ v))

| _ -> 0

let prio lts mmf eta s f =

prio’ lts eta s (unmmf mmf f)

50 B. APPENDIX: MICROMU SOURCE CODE

module MuStateSet = Set.Make(struct

type t = mu_form * Lts.state

let compare = compare

end)

let seen_states mu seen =

MuStateSet.fold (fun (mu’, s) states ->

if mu = mu’

then Lts.States.add s states

else states) seen Lts.States.empty

let gendot lts mmf st s f =

let edge ?(take=true) f1 s1 f2 s2 =

let p1 = prio lts mmf empty_env s1 f1 in

let p2 = prio lts mmf empty_env s2 f2 in

Printf.printf

"\"%s, %d = %d\"[shape=%s]; \"%s, %d = %d\" -> \"%s, %d = %d\" [style=%s];\n"

(String.escaped (Mu.pretty f1)) s1 p1

(if p1 mod 2 == 0

then "box"

else "oval")

(String.escaped (Mu.pretty f1)) s1 p1

(String.escaped (Mu.pretty f2)) s2 p2

(if take

then "bold"

else "dotted")

in

let rec iter seen s f =

if not (MuStateSet.mem (f,s) seen) then

let seen’ = MuStateSet.add (f,s) seen in

match f, Strat.assoc (f,s) st with

| X v, Some Star ->

(match lookup_mmf mmf v with

| Some (MU, _, f1) -> edge f s f1 s; iter seen’ s f1

| Some (NU, _, f1) -> edge f s f1 s; iter seen’ s f1

| None -> failwith ("check.trav: unbound variable " ^ v))

| P _, Some Star -> edge f s f s; iter seen’ s f

| NotP _, Some Star -> edge f s f s; iter seen’ s f

| Disj (f1, f2), Some One -> edge f s f1 s;

edge ~take:false f s f2 s; iter seen’ s f1

| Disj (f1, f2), Some Two -> edge f s f2 s;

edge ~take:false f s f1 s; iter seen’ s f2

| Conj (f1, f2), Some Star ->

edge f s f1 s;

edge f s f2 s;

iter seen’ s f1;

iter seen’ s f2

| Box (a, f1), Some Star ->

Lts.States.iter

B.6. STREETT-AUTOMATON STRATEGY CHECKER 51

(fun s’ -> edge f s f1 s’; iter seen’ s’ f1)

(Lts.succ lts a s)

| Diamond (_, f1), Some Step (_, s’) -> edge f s f1 s’; iter seen’ s’ f1

| _, None -> ()

in

print_string "strict digraph {\n"; (* strict = don’t duplicate edges *)

Lts.States.iter (fun state ->

iter MuStateSet.empty state f) s;

print_string "}\n"

(* Emptyness of street automaton. *)

(* from Alexandre DURET-LUTZ: Contributions a l’approche automate pour

la verification de proprietes de systemes concurrents, fig 7.6.

https://www.lrde.epita.fr/~adl/dl/adl/duret.07.phd.pdf *)

type state = Mu.mu_form * Lts.state

type label = int

type trans = state * label * state

module StateSet = Set.Make(struct type t = state let compare = compare end)

module LabelSet = Set.Make(struct type t = label let compare = compare end)

let string_of_set s =

"{" ^ (LabelSet.fold (fun e a -> a ^ " " ^ (string_of_int e)) s "") ^ "}"

type scc = {

state: state;

root: int;

la: LabelSet.t;

acc: LabelSet.t;

rem: StateSet.t;

succ: trans list;

fsucc: trans list;

}

type avoid = {

root: int;

acc: LabelSet.t;

}

module Hmap = Map.Make(struct type t = state let compare = compare end)

type info = {

scc: scc list;

h: int Hmap.t;

max: int;

52 B. APPENDIX: MICROMU SOURCE CODE

min: int list;

avoid: avoid list;

delta: Lts.t * Mu.mu_map_form * Strat.partial_strat

}

let succ_states (lts,mmf,st) (f,s) =

match Strat.assoc (f,s) st with

| None -> [(f,s),1,(f,s)] (* \bot loop on no strategy reply *)

| Some move ->

(function [] -> [(f,s),1,(f,s)] (* \bot loop on no more move *)

| a -> a) @@

List.map (fun (f’,s’) -> ((f,s), prio lts mmf empty_env s f, (f’,s’))) @@

match f, move with

| X v, Star ->

(match lookup_mmf mmf v with

| Some (MU, _, f) -> [(f,s)]

| Some (NU, _, f) -> [(f,s)]

| None -> failwith ("streett.succ_states: unbound variable " ^ v))

| P _, Star -> [(f,s)]

| NotP _, Star -> [(f,s)]

| Disj (f1, _), One -> [(f1,s)]

| Disj (_, f2), Two -> [(f2,s)]

| Conj (f1, f2), Star -> [(f1,s); (f2,s)]

| Box (a, f1), Star ->

Lts.States.fold (fun s’ l ->

(f1,s’) :: l)

(Lts.succ lts a s) []

| Diamond (a, f1), Step (_, s’) ->

if Lts.StateState.mem (s, s’) (Lts.Actions.find a lts.by_action)

then [(f1,s’)]

else []

| _ -> [] (* invalid move *)

let dfs_push ({scc; h; max; avoid=avoid::_; delta} as info) a q =

let max’ = max + 1 in

let h’ = Hmap.add q max’ h in

let succ, fsucc =

succ_states delta q

|> (fun l ->

List.iter (fun ((a,x),y,(b,z)) ->

Printf.printf "%s %d ===p%d===> %s %d\n"

(Mu.pretty a) x y (Mu.pretty b) z) l;

l)

|> List.partition (fun (_,a,_) -> LabelSet.mem a avoid.acc) in

let scc’ = { state = q;

root = max’;

la = a;

acc = LabelSet.empty;

rem = StateSet.empty;

B.6. STREETT-AUTOMATON STRATEGY CHECKER 53

succ;

fsucc } :: scc

in

{ info with scc=scc’; h=h’; max=max’ }

let dfs_pop ({scc=scc1::sccs; h; min=min1::mins as min;

avoid=avoid1::avoids as avoid} as info) =

let n = scc1.root in

let q = scc1.state in

let max’ = n - 1 in

let min’ = if n <= min1 then mins else min in

let old_avoid = avoid1.acc in

let avoid’ = if n == avoid1.root then avoids else avoid in

let even_wo_bigger_odd =

LabelSet.fold (fun i a ->

if i mod 2 == 0 &&

not (LabelSet.exists (fun j -> j mod 2 == 1 && j > i)

scc1.acc)

then LabelSet.add i a

else a) scc1.acc LabelSet.empty in

let new_avoid = LabelSet.union old_avoid even_wo_bigger_odd

in

if LabelSet.equal old_avoid new_avoid then

let h’ = StateSet.fold (fun s h’ -> Hmap.add s 0 h’) scc1.rem h in

{ info with scc=sccs; h=h’; max=max’; min=min’; avoid=avoid’ }

else

let h’ = StateSet.fold (fun s h’ -> Hmap.remove s h’) scc1.rem h in

let avoid’’ = { root = n; acc = new_avoid } :: avoid’ in

dfs_push { info with scc=sccs; h=h’; max=max’; min=min’; avoid=avoid’’ } scc1.la q

let merge {scc} a t =

let rec iter (scc::sccs : scc list) a r s f =

if t < scc.root then

iter sccs

(LabelSet.union a @@ LabelSet.union scc.acc scc.la)

(StateSet.union r @@ StateSet.add scc.state scc.rem)

(s @ scc.succ)

(f @ scc.fsucc)

else

{ scc with acc = LabelSet.union scc.acc a;

rem = StateSet.union scc.rem r;

succ = scc.succ @ s;

fsucc = scc.fsucc @ f }

:: sccs

in

iter scc (LabelSet.singleton a) StateSet.empty [] []

let rec iter ({scc; h; min=min::_} as info) =

54 B. APPENDIX: MICROMU SOURCE CODE

match scc with

| [] -> true

| scc1::sccs ->

match scc1.succ with

| [] ->

(match scc1.fsucc with

| [] -> iter (dfs_pop info)

| fsucc -> iter { info with

scc = { scc1 with succ = fsucc; fsucc = [] } :: sccs })

| (_,a,d)::succ’ ->

let info = { info with scc = { scc1 with succ = succ’ } :: sccs } in

if not @@ Hmap.mem d h then

iter (dfs_push info (LabelSet.singleton a) d)

else if Hmap.find d h > min then

(let sccs’’ = merge info a (Hmap.find d h) in

let acc = (List.hd sccs’’).acc in

if (LabelSet.max_elt acc) mod 2 == 1

then false

else iter { info with scc=sccs’’ }

)

else

iter info

let check_streett delta q0 =

let avoid = [{root = 1; acc = LabelSet.empty}] in

let info = {scc = []; h = Hmap.empty; max = 0; min = [0]; avoid; delta} in

iter (dfs_push info (LabelSet.empty) q0)

let check lts mmf st s f’ =

Lts.States.empty, check_streett (lts,mmf,st) (f’,s);

B.7. Main driver

Listing B.9. micromu.mli
val checker : (module Checker_intf.Checker) ref

val counterexample : bool ref

val dot : bool ref

val force : bool ref

val main : unit -> unit

Listing B.10. micromu.ml
let load_file f =

let ic = open_in f in

let n = in_channel_length ic in

let s = String.create n in

really_input ic s 0 n; close_in ic;

s

B.7. MAIN DRIVER 55

let lts_from_string s =

Aldebaranparse.aldebaran Aldebaranlex.main (Lexing.from_string s)

let mu_from_string s =

Muparse.mu Mulex.main (Lexing.from_string s)

let string_of_set s =

Lts.States.fold (fun e a -> a ^ " " ^ string_of_int e) s ""

let time s f =

let t = Sys.time() in

let r = f () in

Printf.printf "### Execution time %s: %fs\n" s (Sys.time() -. t);

r

let checker = ref (module Checker : Checker_intf.Checker)

let counterexample = ref false

let dot = ref false

let force = ref false

let argv = ref []

let args = [("-d", Arg.Set dot, "Output strategy run as .dot");

("-f", Arg.Set force, "Force checking of all positions");

("-c", Arg.Set counterexample, "Negate formula");

("-s", Arg.Unit (fun () ->

checker := (module Streett : Checker_intf.Checker)),

"Use Streett automaton for checking")]

let usage = "Usage: micromu [-cdfs] ltsfile mufile"

let main () =

Arg.parse args (fun arg -> argv := !argv @ [arg]) usage;

let (module Checker : Checker_intf.Checker) = !checker in

match !argv with

| [ltsfile; mufile] ->

let lts = lts_from_string (load_file ltsfile)

and mu = mu_from_string (load_file mufile) in

let mu =

if !counterexample

then Mu.negate mu

else mu in

let mu’, mmf = Mu.study mu in

Printf.printf "%s\n\n%!" (Mu.pretty_mmf mmf);

56 B. APPENDIX: MICROMU SOURCE CODE

let c = time "Mu.sem" (fun () -> Mu.sem lts mmf mu’ Mu.empty_env) in

Printf.printf "result: %s\n\n%!" (string_of_set c);

let st = time "Strat.sem" (fun () -> Strat.sem lts mmf mu’ Mu.empty_env) in

print_string "\n------\n";

print_string (Strat.pretty ~sep:" |\n" st);

print_string "\n------\n";

if !dot then

time "gendot" (fun () -> Checker.gendot lts mmf st c mu’);

print_string "\n------\n";

let verified = ref true in

let seen_good = ref Lts.States.empty in

let seen_bad = ref Lts.States.empty in

time "verify" (fun () ->

Lts.States.iter (fun s ->

Printf.printf "verifying for good state %d:\n%!" s;

if Lts.States.mem s !seen_good

then

Printf.printf "state %d: known good\n%!" s

else

let seen,t = Checker.check lts mmf st s mu’ in

if t

then

(Printf.printf "state %d: true\n%!" s;

if not !force then

seen_good := Lts.States.union !seen_good seen)

else

(Printf.printf "state %d: FALSE\n%!" s;

verified := false)

) c;

Lts.States.iter (fun s ->

Printf.printf "verifying for bad state %d:\n%!" s;

if Lts.States.mem s !seen_bad

then

Printf.printf "state %d: known bad\n%!" s

else

let seen,t = Checker.check lts mmf st s mu’ in

if not t

then

(Printf.printf "state %d: false\n%!" s;

B.7. MAIN DRIVER 57

if not !force then

seen_bad := Lts.States.union !seen_bad seen)

else

(Printf.printf "state %d: TRUE\n%!" s;

verified := false)

) (Lts.States.diff (Lts.all_states lts) c));

Printf.printf "result: %s\n%!" (string_of_set c);

Printf.printf "verification %s\n%!" (if !verified then "passed" else "FAILED")

| _ ->

Arg.usage args usage

let _ = main ()

Bibliography

[1] Henk Barendregt and Freek Wiedijk. “The challenge of computer mathematics.”
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 363.1835 (Oct. 15, 2005), pp. 2351–2375. issn: 1471-2962.

[2] Armin Biere. “µcke – Efficient µ-Calculus Model Checking.” In: Computer Aided
Verification, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997,
Proceedings. Ed. by Orna Grumberg. Vol. 1254. Lecture Notes in Computer Science.
Springer, 1997, pp. 468–471. isbn: 3-540-63166-6. doi: 10.1007/3-540-63166-6_50.
url: http://dx.doi.org/10.1007/3-540-63166-6_50.

[3] Armin Biere. “Efficient Model Checking of the Mu-Calculus with Binary Decision
Diagrams.” German. PhD Thesis. Uni Karlsruhe, Jan. 1997.

[4] Nils Buhrke, Helmut Lescow, and Jens Vöge. “Strategy construction in infinite
games with Streett and Rabin chain winning conditions.” In: Tools and Algorithms
for Construction and Analysis of Systems, Second International Workshop, TACAS
’96, Passau, Germany, March 27-29, 1996, Proceedings. Ed. by Tiziana Margaria
and Bernhard Steffen. Vol. 1055. Lecture Notes in Computer Science. Springer,
1999, pp. 207–225. isbn: 3-540-61042-1.

[5] CADP, ed. aut, AUT – simple file format for labelled transition systems. 2014. url:
http://www.inrialpes.fr/vasy/cadp/man/aut.html.

[6] P. Cousot and R. Cousot. “Constructive Versions of Tarski’s Fixed Point Theorems.”
In: Pacific Journal of Mathematics 81.1 (1979), pp. 43–57.

[7] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[8] Alexandre Duret-Lutz. “Contributions à l’approche automate pour la vérification

de propriétés de systèmes concurrents.” PhD Thesis. Université Pierre et Marie
Curie (Paris 6), July 2007. url: https://www.lrde.epita.fr/~adl/th.html.

[9] Alexandre Duret-Lutz, Denis Poitrenaud, and Jean-Michel Couvreur. “On-the-fly
Emptiness Check of Transition-based Streett Automata.” In: Proceedings of the 7th
International Symposium on Automated Technology for Verification and Analysis
(ATVA’09). Ed. by Zhiming Liu and Anders P. Ravn. Vol. 5799. Lecture Notes in
Computer Science. Springer, 2009, pp. 213–227.

[10] John Ellson et al. “Graphviz – Open Source Graph Drawing Tools.” In: Graph
Drawing (2001), pp. 483–484.

[11] E. Allen Emerson. “Model Checking and the Mu-calculus.” In: Descriptive Complex-
ity and Finite Models, Proceedings of a DIMACS Workshop, January 14-17, 1996,
Princeton University. Ed. by Neil Immerman and Phokion G. Kolaitis. Vol. 31. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1996, pp. 185–214. isbn: 0-8218-0517-7.

59

http://dx.doi.org/10.1007/3-540-63166-6_50
http://dx.doi.org/10.1007/3-540-63166-6_50
http://www.inrialpes.fr/vasy/cadp/man/aut.html
https://www.lrde.epita.fr/~adl/th.html

60 BIBLIOGRAPHY

[12] E. Allen Emerson and Charanjit S. Jutla. “The Complexity of Tree Automata
and Logics of Programs.” In: SIAM J. Comput. 29.1 (Sept. 1999), pp. 132–158.
issn: 0097-5397. doi: 10.1137/S0097539793304741. url: http://dx.doi.org/
10.1137/S0097539793304741.

[13] E. Allen Emerson and Charanjit S. Jutla. “Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract).” In: 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE Computer
Society, 1991, pp. 368–377. doi: 10.1109/SFCS.1991.185392. url: http://doi.
ieeecomputersociety.org/10.1109/SFCS.1991.185392.

[14] E. Allen Emerson and Chin-Laung Lei. “Efficient Model Checking in Fragments of
the Propositional Mu-Calculus (Extended Abstract).” In: LICS’86. 1986, pp. 267–
278.

[15] Javier Esparza et al. “A Fully Verified Executable LTL Model Checker.” In: Com-
puter Aided Verification (CAV 2013). Ed. by N. Sharygina and H. Veith. Vol. 8044.
2013, pp. 463–478.

[16] Jean-Claude Fernandez. “ALDEBARAN : un système de vérification par réduction
de processus communicants.” PhD Thesis. Université Joseph-Fourier – Grenoble I,
1988. eprint: http://tel.archives-ouvertes.fr/tel-00326157.

[17] Oliver Friedmann. “An Exponential Lower Bound for the Parity Game Strategy
Improvement Algorithm as We Know it.” In: LICS. IEEE Computer Society, 2009,
pp. 145–156. isbn: 978-0-7695-3746-7.

[18] Martin Hofmann and Martin Lange. Automatentheorie und Logik. 1st ed. Springer-
Verlag, 2011. isbn: 978-3-642-18089-7.

[19] Martin Hofmann and Harald Rueß. “Certification for mu-calculus with winning
strategies.” In: ArXiv e-prints (Jan. 2014). arXiv: 1401.1693 [cs.LO].

[20] Giacomo Lenzi. “A hierarchy theorem for the µ-calculus.” In: Automata, Languages
and Programming. Ed. by Friedhelm Meyer and Burkhard Monien. Vol. 1099.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1996, pp. 87–
97. isbn: 978-3-540-61440-1. doi: 10.1007/3-540-61440-0_119. url: http:
//dx.doi.org/10.1007/3-540-61440-0_119.

[21] Xavier Leroy et al. The OCaml system release 4.01: Documentation and user’s
manual. Anglais. Sept. 2013. url: http://hal.inria.fr/hal-00930213.

[22] Tiziana Margaria and Bernhard Steffen, eds. Tools and Algorithms for Construction
and Analysis of Systems, Second International Workshop, TACAS ’96, Passau,
Germany, March 27-29, 1996, Proceedings. Vol. 1055. Lecture Notes in Computer
Science. Springer, 1996. isbn: 3-540-61042-1.

[23] Donald A. Martin. “Borel determinacy.” In: Annals of Mathematics 102 (1975),
pp. 363–371.

[24] Kenneth L. McMillan. “Symbolic Model Checking.” PhD Thesis. Carnegie Mellon
University, 1993. url: http://www.kenmcmil.com/pubs/thesis.pdf.

[25] Kedar S. Namjoshi. “Certifying Model Checkers.” In: Computer Aided Verification,
13th International Conference, CAV 2001, Paris, France, July 18-22, 2001, Pro-
ceedings. Ed. by Gérard Berry, Hubert Comon, and Alain Finkel. Vol. 2102. Lecture
Notes in Computer Science. Springer, 2001, pp. 2–13. isbn: 3-540-42345-1. doi:

http://dx.doi.org/10.1137/S0097539793304741
http://dx.doi.org/10.1137/S0097539793304741
http://dx.doi.org/10.1137/S0097539793304741
http://dx.doi.org/10.1109/SFCS.1991.185392
http://doi.ieeecomputersociety.org/10.1109/SFCS.1991.185392
http://doi.ieeecomputersociety.org/10.1109/SFCS.1991.185392
http://tel.archives-ouvertes.fr/tel-00326157
http://arxiv.org/abs/1401.1693
http://dx.doi.org/10.1007/3-540-61440-0_119
http://dx.doi.org/10.1007/3-540-61440-0_119
http://dx.doi.org/10.1007/3-540-61440-0_119
http://hal.inria.fr/hal-00930213
http://www.kenmcmil.com/pubs/thesis.pdf

10.1007/3-540-44585-4_2. url: http://dx.doi.org/10.1007/3-540-44585-
4_2.

[26] Tobias Nipkow and Gerwin Klein. Concrete Semantics. 1st ed. Mar. 21, 2014. url:
http://www21.in.tum.de/~nipkow/Concrete-Semantics/ (visited on Aug. 22,
2014).

[27] Etienne Renault et al. “Three SCC-based Emptiness Checks for Generalized Büchi
Automata.” In: Proceedings of the 19th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR’13). Ed. by Ken McMillan,
Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes in Computer
Science. Springer, Dec. 2013, pp. 668–682.

[28] Hassen Säıdi and Natarajan Shankar. “Abstract and Model Check while You
Prove.” In: Computer Aided Verification. Ed. by Nicolas Halbwachs and Doron
Peled. Vol. 1633. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1999, pp. 443–454. isbn: 978-3-540-66202-0. doi: 10.1007/3-540-48683-6_38.
url: http://dx.doi.org/10.1007/3-540-48683-6_38.

[29] N. Shankar and M. Sorea. Counterexample-Driven Model Checking. Revisited version.
Technical Report. SRI International, 2003. url: http://www.csl.sri.com/users/
sorea/reports/wmc.ps.gz (visited on June 18, 2014).

[30] Colin Stirling. “Games and Modal Mu-Calculus.” In: TACAS. Ed. by Tiziana
Margaria and Bernhard Steffen. Vol. 1055. Lecture Notes in Computer Science.
Springer, 1996, pp. 298–312. isbn: 3-540-61042-1.

[31] Colin Stirling and David Walker. “Local Model Checking in the Modal Mu-
Calculus.” In: TAPSOFT, Vol.1. Ed. by Josep Dı́az and Fernando Orejas. Vol. 351.
Lecture Notes in Computer Science. Springer, 1989, pp. 369–383. isbn: 3-540-50939-
9.

[32] Robert S. Streett and E. Allen Emerson. “An Automata Theoretic Decision Proce-
dure for the Propositional Mu-Calculus.” In: Information and Computation 81.3
(1989), pp. 249–264.

[33] Robert Streett and E. Emerson. “The propositional mu-calculus is elementary.” In:
Automata, Languages and Programming. Ed. by Jan Paredaens. Vol. 172. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1984, pp. 465–472. isbn:
978-3-540-13345-2.

[34] perf users, ed. perf: Linux profiling with performance counters. 2014. url: https:
//perf.wiki.kernel.org/ (visited on Sept. 4, 2014).

[35] Kumar Neeraj Verma. Reflecting Symbolic Model Checking in Coq. Report on DEA
internship. GIA Dyade and INRIA, 2000.

[36] Pierre Wolper. “Temporal Logic Can Be More Expressive.” In: Information and
Control 56.1/2 (1983), pp. 72–99.

http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-44585-4_2
http://www21.in.tum.de/~nipkow/Concrete-Semantics/
http://dx.doi.org/10.1007/3-540-48683-6_38
http://dx.doi.org/10.1007/3-540-48683-6_38
http://www.csl.sri.com/users/sorea/reports/wmc.ps.gz
http://www.csl.sri.com/users/sorea/reports/wmc.ps.gz
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/

Hiermit versichere ich, dass die zum heutigen Tag an der Fakultät für Mathematik,
Informatik und Statistik eingereichte Masterarbeit zum Thema “Computation of winning
strategies for µ-calculus by fixpoint iteration” selbstständig verfasst wurde und ich keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich
gemacht habe.

Datum, Unterschrift:

	Abstract
	Kurzzusammenfassung
	Preface
	Chapter 1. Model checking and the modal -calculus
	1.1. Goals of model checking
	1.2. Labelled transition systems
	1.3. -calculus syntax
	1.4. Set semantics, fixpoint iteration, Knaster-Tarski
	1.5. -calculus systems of equations
	1.6. Expressivity of model checking logics
	1.7. A few examples
	1.8. Certified model checking
	1.9. Model checking and proof assistants
	1.10. Addressing state space explosion

	Chapter 2. Parity games and strategies
	2.1. Parity games
	2.2. Strategies and positional strategies
	2.3. Certificates for winning strategies

	Chapter 3. Certification for -calculus
	3.1. Model checking as parity game
	3.2. Partial winning strategies
	3.3. Strategy semantics
	3.4. An example strategy
	3.5. Checking strategies
	3.6. The move relation
	3.7. Simple, recursive checking of strategies
	3.8. Efficient checking of strategies with strongly connected components
	3.9. Generating counterexamples
	3.10. Verification of counterexamples
	3.11. Complexity analysis

	Chapter 4. Implementation and optimization
	4.1. Implementation
	4.2. Optimization of checking
	4.3. Optimization of the implementation
	4.4. Benchmarks

	Chapter 5. Perspectives
	5.1. Summary of the work
	5.2. Further possible optimizations
	5.3. Formal verification
	5.4. Comparison to verified model checkers

	Appendix A. Appendix: Using Micromu
	A.1. Command line arguments
	A.2. LTS file format
	A.3. MU file format

	Appendix B. Appendix: Micromu Source Code
	B.1. Labelled transition systems
	B.2. -calculus formulae
	B.3. Partial winning strategies
	B.4. Strategy checker interface
	B.5. Simple strategy checker
	B.6. Streett-automaton strategy checker
	B.7. Main driver

	Bibliography

