
Computation of winning
strategies for µ-Calculus

by fixpoint iteration

Christian Neukirchen

TCS Oberseminar · July 11, 2014

1

Overview

• Short introduction to µ-calculus

• Parity games and strategies

• Strategies for µ-calculus

• Example: mutex

• Implementation and optimization

• Future

2

Labelled Transition Systems

We consider LTS having a non-empty set of states S, total rela-
tions

a−→∈ S × S (for actions a ∈ A) and propositions p ∈ P
which hold at a state or not.

0:n1,n2

1:t1,n2 5:n1,t2

3:t1,t22:c1,n1

4:c1,t2

6:n1,c2

7:t1,c2

3

µ-calculus: Syntax (from Hofmann and
Rueß 2014)

φ ::= X
| p | ¬p
| [a]φ (for all a-transitions)
| 〈a〉φ (a-transition exists)

| φ1 ∧ φ2 | φ1 ∨ φ2

| µX.φ (least fixpoint)

| νX.φ (greatest fixpoint)

Only propositions can be negated to ensuremonotonicity.
4

µ-calculus: Examples

“q holds everywhere along the path”

νX.q ∧ [a]X

“q holds infinitely often on the path”

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y

“p holds at every even position” (more powerful than CTL*)

νX.p ∧ 〈a〉〈a〉X
5

µ-calculus: Set semantics

sem(X, η) = η(X)

sem(φ1 ∧ φ2, η) = sem(φ1, η) ∩ sem(φ2, η)

sem(φ1 ∨ φ2, η) = sem(φ1, η) ∪ sem(φ2, η)

sem([a]φ, η) = p̃re(a−→)(sem(φ, η))

sem(〈a〉φ, η) = pre(a−→)(sem(φ, η))

sem(µX.φ, η) = iterX(φ, η, ∅)

sem(νX.φ, η) = iterX(φ, η, S)

s ∈ p̃re(a−→)(U) ⇔ ∀t ∈ S. s a−→ t =⇒ t ∈ U

s ∈ pre(a−→)(U) ⇔ ∃t ∈ S. s a−→ t ∧ t ∈ U

iterX(φ, η, U) = let U′ := sem(φ, η[X := U]) in

if U = U′ then U else iterX(φ, η, U′)

6

Parity games

A parity game consists of a disjoint sum of positions Pos =
Pos0 ∪ Pos1, a total edge relation→⊆ Pos× Pos and a priority
function Ω : Pos → N.

Moves happen along the edge relation. The destination decides
who moves next.

The game iswon if the largest priority that occurs infinitely often
is even, the opponent wins if it is odd.

7

Strategies for parity games

A strategy ρ is a function that tells the player how tomove next.

A positional strategy only takes the the current position into ac-
count.

A position is in a winning set Wi if there exists a strategy ρ such
that player i wins, starting at a position in Wi.

Theorem 1. Every position p is either in W0 or W1 and player i
wins positionally from every position in Wi.

8

Strategies for µ-calculus

Wecan interpret a µ-calculus formula φ as a parity game. Moves
can happen along the subformulae (example next slide). The
priority of a position depends on the kind of formula and its
nesting depth.

A partial winning strategy for µ-calculus is a partial function

Σ : Φ × S ⇀ s (move to state s ∈ S)
| 1 (take the left formula)

| 2 (take the right formula)

| ∗ (take the only formula)

9

Small strategy example

0 1:q 2

νX.µY.(q ∧ 〈a〉X) ∨ 〈a〉Y

X := νX.Y
Y := µY.(q ∧ 〈a〉X) ∨ 〈a〉Y

X 0 -> * |

X 1 -> * |

Y 0 -> * |

Y 1 -> * |

q 1 -> * |

(<a>X) 0 -> X 1 |

(<a>X) 1 -> X 1 |

(<a>Y) 0 -> Y 1 |

(<a>Y) 1 -> Y 1 |

q /\ (<a>X) 1 -> * |

(q /\ (<a>X)) \/ (<a>Y) 0 -> #2 |

(q /\ (<a>X)) \/ (<a>Y) 1 -> #1

10

Updating strategies

Given two winning strategies Σ and Σ′, we can define the partial
winning strategy Σ + Σ′ as

(Σ + Σ′)(φ, s) = if (φ, s) ∈ dom(Σ)
then Σ(φ, s)
else Σ′(φ, s)

11

Strategy semantics

SEM(X)η = {(X, s) 7→ ∗ | s ∈ η(X)}
SEM(p)η = {(p, s) 7→ ∗ | p holds at s}

SEM(¬p)η = {(p, s) 7→ ∗ | p does not hold at s}
SEM(φ ∧ ψ)η = SEM(φ)η + SEM(ψ)η

+ {(φ ∧ ψ, s) 7→ ∗ | (φ, s) ∈ dom(SEM(φ)η)

∧ (ψ, s) ∈ dom(SEM(ψ)η)}
SEM(φ ∨ ψ)η = SEM(φ)η + SEM(ψ)η

+ {(φ ∨ ψ, s) 7→ 1 | (φ, s) ∈ dom(SEM(φ)η)}
+ {(φ ∨ ψ, s) 7→ 2 | (ψ, s) ∈ dom(SEM(ψ)η)}

12

SEM([a]φ)η = SEM(φ)η

+ {([a]φ, s) 7→ ∗ | (φ, s) ∈ dom(SEM(φ))η}
SEM(〈a〉φ)η = SEM(φ)η

+ {(〈a〉φ, s) 7→ s′ | s a−→ s′ ∧ (φ, s′) ∈ dom(SEM(φ))η}

SEM(νX.φ)η = SEM(φ)η[X:=sem(φ,η)]

SEM(µX.φ)η = ITERX(φ, η, {})

ITERX(φ, η, Σ) = let Σ′ := SEM(φ)η[X:=dom(Σ)] in

if Σ = Σ′ then Σ else ITERX(φ, η, Σ′)

13

Checking strategies

Easy algorithm for checkingwhether a strategy is correct:

Run the strategy until you find a loop (hit the same formula at
the same state again): then check whether the highest priority
inside the loop is even (good) or odd (strategy is wrong!).

Can be implemented as simple recursive traversal.

14

Example: mutual exclusion (from Huth and
Ryan 2004)

0:n1,n2

1:t1,n2 5:n1,t2

3:t1,t22:c1,n1

4:c1,t2

6:n1,c2

7:t1,c2

Safety “Only one process is in its critical
section at any time.”
νZ.¬(c1 ∧ c2) ∧ [a]Z

Liveness “Whenever any process re-
quests to enter its critical section,
it will eventually be permitted to do
so.”
νZ.(¬t1 ∨ (µX.c1 ∨ [a]X))∧ [a]Z

15

Mutex safety: sample run

% ./micromu.native huth-fig3.7.lts huth-fig3.7-safety.mu

Z =nu/1= ~c1 \/ ~c2 /\ ([a]Z)

Execution time Mu.sem: 0.000000s

result: 0 1 2 3 4 5 6 7

Execution time Strat.sem: 0.003333s

...

verifying for good state 0:

TRAV Z , 0 , loop-search

TRAV ~c1 \/ ~c2 /\ ([a]Z) , 0 , loop-search

TRAV ~c1 \/ ~c2 , 0 , loop-search

TRAV ~c1 , 0 , loop-search

16

TRAV ~c1 , 0 , loop-search

TRAV ~c1 , 0 , maxprio 0 here 0

TRAV ~c1 , 0 , maxprio 0 here 0

TRAV ([a]Z) , 0 , loop-search

state 0: true

...

verifying for good state 5:

TRAV Z , 5 , loop-search

TRAV ~c1 \/ ~c2 /\ ([a]Z) , 5 , loop-search

TRAV ~c1 \/ ~c2 , 5 , loop-search

TRAV ~c1 , 5 , loop-search

TRAV ~c1 , 5 , loop-search

TRAV ~c1 , 5 , maxprio 0 here 0

TRAV ~c1 , 5 , maxprio 0 here 0

TRAV ([a]Z) , 5 , loop-search

TRAV Z , 4 , loop-search

TRAV ~c1 \/ ~c2 /\ ([a]Z) , 4 , loop-search
17

TRAV ~c1 \/ ~c2 , 4 , loop-search

TRAV ~c2 , 4 , loop-search

TRAV ~c2 , 4 , loop-search

TRAV ~c2 , 4 , maxprio 0 here 0

TRAV ~c2 , 4 , maxprio 0 here 0

TRAV ([a]Z) , 4 , loop-search

state 5: true

verifying for good state 6:

state 6: known good

verifying for good state 7:

state 7: known good

Execution time verify: 0.000000s

result: 0 1 2 3 4 5 6 7

verification passed

18

Mutex safety: strategy run

Z, 0 = 2

~c1 \/ ~c2 /\ ([a]Z), 0 = 0

~c1 \/ ~c2, 0 = 0 ([a]Z), 0 = 0

~c1, 0 = 0 ~c2, 0 = 0

Z, 1 = 2

~c1 \/ ~c2 /\ ([a]Z), 1 = 0

~c1 \/ ~c2, 1 = 0 ([a]Z), 1 = 0

~c1, 1 = 0 ~c2, 1 = 0 Z, 7 = 2

~c1 \/ ~c2 /\ ([a]Z), 7 = 0

~c1 \/ ~c2, 7 = 0 ([a]Z), 7 = 0

~c1, 7 = 0 ~c2, 7 = 1 Z, 6 = 2

~c1 \/ ~c2 /\ ([a]Z), 6 = 0

~c1 \/ ~c2, 6 = 0 ([a]Z), 6 = 0

~c1, 6 = 0 ~c2, 6 = 1

Z, 2 = 2

~c1 \/ ~c2 /\ ([a]Z), 2 = 0

~c1 \/ ~c2, 2 = 0 ([a]Z), 2 = 0

~c2, 2 = 0 ~c1, 2 = 1

Z, 3 = 2

~c1 \/ ~c2 /\ ([a]Z), 3 = 0

~c1 \/ ~c2, 3 = 0 ([a]Z), 3 = 0

~c1, 3 = 0 ~c2, 3 = 0 Z, 4 = 2

~c1 \/ ~c2 /\ ([a]Z), 4 = 0

~c1 \/ ~c2, 4 = 0 ([a]Z), 4 = 0

~c2, 4 = 0 ~c1, 4 = 1

Z, 5 = 2

~c1 \/ ~c2 /\ ([a]Z), 5 = 0

~c1 \/ ~c2, 5 = 0 ([a]Z), 5 = 0

~c1, 5 = 0 ~c2, 5 = 0

19

Mutex liveness: sample run

% ./micromu.native huth-fig3.7.lts huth-fig3.7-liveness.mu

X =mu/4= c1 \/ ([a]X)

Z =nu/1= ~t1 \/ X /\ ([a]Z)

Execution time Mu.sem: 0.000000s

result:

The formula holds nowhere: the strategy is empty. The mutex
does not guarantee liveness. Why?

20

Mutex liveness: generating
counterexamples

To generate a counter example, we can tell micromu to negate
the formula using -c:

% ./micromu.native -c huth-fig3.7.lts huth-fig3.7-liveness.mu

Execution time Mu.sem: 0.000000s

Execution time Strat.sem: 0.003333s

Execution time gendot: 0.006666s

Execution time verify: 0.003333s

result: 0 1 2 3 4 5 6 7

verification passed

Looking at the strategy, we can find the counterexample.
21

Mutex liveness: counterexample strategy

Z, 0 = 3

t1 /\ X \/ (<a>Z), 0 = 0

(<a>Z), 0 = 0 t1 /\ X, 0 = 0

Z, 1 = 3

t1 /\ X \/ (<a>Z), 1 = 0

t1 /\ X, 1 = 0 (<a>Z), 1 = 0

t1, 1 = 0 X, 1 = 2

~c1 /\ (<a>X), 1 = 0

~c1, 1 = 0 (<a>X), 1 = 0

X, 3 = 2

~c1 /\ (<a>X), 3 = 0

~c1, 3 = 0 (<a>X), 3 = 0

X, 7 = 2

~c1 /\ (<a>X), 7 = 0

~c1, 7 = 0 (<a>X), 7 = 0

Z, 2 = 3

t1 /\ X \/ (<a>Z), 2 = 0

(<a>Z), 2 = 0 t1 /\ X, 2 = 0

Z, 3 = 3

t1 /\ X \/ (<a>Z), 3 = 0

t1 /\ X, 3 = 0 (<a>Z), 3 = 0

t1, 3 = 0

Z, 4 = 3

t1 /\ X \/ (<a>Z), 4 = 0

(<a>Z), 4 = 0 t1 /\ X, 4 = 0

Z, 5 = 3

t1 /\ X \/ (<a>Z), 5 = 0

(<a>Z), 5 = 0 t1 /\ X, 5 = 0

Z, 6 = 3

t1 /\ X \/ (<a>Z), 6 = 0

(<a>Z), 6 = 0 t1 /\ X, 6 = 0

Z, 7 = 3

t1 /\ X \/ (<a>Z), 7 = 0

t1 /\ X, 7 = 0 (<a>Z), 7 = 0

t1, 7 = 0

The big loop corresponds to
0 → 1 → 3 → 7 → 1 →
3 → 7 → · · ·

22

Fixing the mutex

0:n1,n2

1:t1,n2 5:n1,t2

3:t1,t22:c1,n1

4:c1,t2

6:n1,c2

7:t1,c2

0:n1,n2

1:t1,n2 5:n1,t2

2:c1,n1 3:t1,t2

4:c1,t2

8:t1,t2 6:n1,c2

7:t1,c2

% ./micromu.native huth-fig3.8.lts huth-fig3.7-liveness.mu

...

result: 0 1 2 3 4 5 6 7 8

verification passed

23

Implementation

compact: about 1 kLOC OCaml (another 1 kLOC thrown away
during development), no external dependencies

quick: “worst-case” exponential example1 G1 takes 0:02:40 and
uses 28 MB RAM (down from 3+ hours / 6+ GB…)

simple, recursive algorithms: verifier should be easy to port to
proof assistant (Coq)

115 nested quantifiers, cf. Friedmann 2009, section 5ff.

24

Systems of equations

First version actually substituted variables inside µ-formulae:
consumes exponential amount of memory with nested formu-
lae.

Rewrite equations as a ordered systemof equations:

νZ.(¬t1 ∨ (µX.c1 ∨ [a]X)) ∧ [a]Z

Z ν
= (¬t1 ∨ X) ∧ [a]Z

X
µ
= c1 ∨ [a]X

Need order to restore
original formula.

Vastly simplifies
implementation:
makes ν-case trivial,
µ-case a lot easier.

25

Optimizations

• Caching of results for νX.φ case

• Avoiding OCaml polymorphic compare (compare_val)

• Usingmaps for strategies, not association lists (requires careful
strategy update)

• Caching of verified states (else easily quadratic runtime)

• Very helpful: ocamlcp(1)/ocamlprof(1) and perf(1)

26

Future: formal verification

• The checker is meant to be a certified decision procedure

• Formally verifying the checker to be correct results in a verified
implementation of µ-calculus

• Done so far: definitions of least and greatest fixpoints (on arbi-
trary sets), specialized version of Knaster-Tarski, µ-calculus set
semantics

• To do: serialize strategies into Coq terms

• To do: implement checker for strategies (using finite sets)

• To do: prove checker correct

• To do: extract verified checker?

27

Questions?

Thank you.

28

References

[1] Oliver Friedmann. “An Exponential Lower Bound for the
Parity Game Strategy Improvement Algorithm asWe Know
it”. In: LICS. IEEE Computer Society, 2009, pp. 145–156.
isbn: 978-0-7695-3746-7.

[2] Martin Hofmann and Harald Rueß. “Certification for mu-
calculus with winning strategies”. In: ArXiv e-prints (Jan.
2014). arXiv: 1401.1693 [cs.LO].

[3] Michael Huth and Mark Dermot Ryan. Logic in Computer
Science: Modelling and Reasoning About Systems. 2nd. New
York, NY, USA: Cambridge University Press, 2004, pp. I–
XIV, 1–427. isbn: 052154310X.

29

