Computation of winning strategies for μ-Calculus by fixpoint iteration

Christian Neukirchen
TCS Oberseminar • July 11, 2014

Overview

- Short introduction to μ-calculus
- Parity games and strategies
- Strategies for μ-calculus
- Example: mutex
- Implementation and optimization
- Future

Labelled Transition Systems

We consider LTS having a non-empty set of states S, total relations $\xrightarrow{a} \in S \times S$ (for actions $a \in \mathcal{A}$) and propositions $p \in \mathcal{P}$ which hold at a state or not.

μ-calculus: Syntax (from Hofmann and Rueß 2014)

$$
\begin{array}{rlr}
\phi::=X & \\
& \left\lvert\, \begin{array}{ll}
& p \mid \neg p \\
& {[a] \phi} \\
& \\
& \langle a\rangle \phi \\
& \phi_{1} \wedge \phi_{2} \\
& \mid \phi_{1} \vee \phi_{2}
\end{array}\right. & \\
& \mu X . \phi & \text { (for all a-transitions) } \\
& \nu X . \phi & \text { (a-transition exists) } \\
& & \\
& \text { (least fixpoint) } \\
& \text { (greatest fixpoint) }
\end{array}
$$

Only propositions can be negated to ensure monotonicity.

μ-calculus: Examples

" q holds everywhere along the path"

$$
v X . q \wedge[a] X
$$

" q holds infinitely often on the path"

$$
v X . \mu Y .(q \wedge\langle a\rangle X) \vee\langle a\rangle Y
$$

"p holds at every even position" (more powerful than CTL")

$$
v X . p \wedge\langle a\rangle\langle a\rangle X
$$

μ-calculus: Set semantics

$$
\begin{aligned}
\operatorname{sem}(X, \eta) & =\eta(X) \\
\operatorname{sem}\left(\phi_{1} \wedge \phi_{2}, \eta\right) & =\operatorname{sem}\left(\phi_{1}, \eta\right) \cap \operatorname{sem}\left(\phi_{2}, \eta\right) \\
\operatorname{sem}\left(\phi_{1} \vee \phi_{2}, \eta\right) & =\operatorname{sem}\left(\phi_{1}, \eta\right) \cup \operatorname{sem}\left(\phi_{2}, \eta\right) \\
\operatorname{sem}([a] \phi, \eta) & =\widetilde{\operatorname{pre}}(\stackrel{a}{\rightarrow})(\operatorname{sem}(\phi, \eta)) \\
\operatorname{sem}(\langle a\rangle \phi, \eta) & =\operatorname{pre}\left(\frac{a}{\rightarrow}\right)(\operatorname{sem}(\phi, \eta)) \\
\operatorname{sem}(\mu X . \phi, \eta) & =\operatorname{iter}_{X}(\phi, \eta, \varnothing) \\
\operatorname{sem}(v X . \phi, \eta) & =\operatorname{iter}_{X}(\phi, \eta, S) \\
s \in \widetilde{\operatorname{pre}}(\xrightarrow{a})(U) & \Leftrightarrow \forall t \in S . s \xrightarrow{a} t \Longrightarrow t \in U \\
s \in \operatorname{pre}(\xrightarrow[a]{\rightarrow})(U) & \Leftrightarrow \exists t \in S . s \xrightarrow{a} t \wedge t \in U \\
\operatorname{iter}_{X}(\phi, \eta, U) & =\operatorname{let} U^{\prime}:=\operatorname{sem}(\phi, \eta[X:=U]) \text { in }
\end{aligned}
$$

$$
\text { if } U=U^{\prime} \text { then } U \text { else } \text { iter }_{X}\left(\phi, \eta, U^{\prime}\right)
$$

Parity games

A parity game consists of a disjoint sum of positions Pos $=$ $\mathrm{Pos}_{0} \cup \mathrm{Pos}_{1}$, a total edge relation $\rightarrow \subseteq$ Pos \times Pos and a priority function $\Omega:$ Pos $\rightarrow \mathbb{N}$.

Moves happen along the edge relation. The destination decides who moves next.

The game is won if the largest priority that occurs infinitely often is even, the opponent wins if it is odd.

Strategies for parity games

A strategy ρ is a function that tells the player how to move next.
A positional strategy only takes the the current position into account.

A position is in a winning set W_{i} if there exists a strategy ρ such that player i wins, starting at a position in W_{i}.

Theorem 1. Every position p is either in W_{0} or W_{1} and player i wins positionally from every position in W_{i}.

Strategies for μ-calculus

We can interpret a μ-calculus formula ϕ as a parity game. Moves can happen along the subformulae (example next slide). The priority of a position depends on the kind of formula and its nesting depth.

A partial winning strategy for μ-calculus is a partial function

| $\Sigma: \Phi \times S$ | $\rightharpoonup s$ |
| ---: | :--- | ---: |
| $\left\lvert\,$1
 2
 $*$$\quad$(move to state $s \in S$)
 (take the left formula)\right. | |
| (take the right formula) | |
| (take the only formula) | |

Small strategy example

$$
\left.\begin{array}{lll}
& \left.\begin{array}{llll}
X & 0 & -> & \star
\end{array} \right\rvert\, \\
X & 1 & ->
\end{array}\right)
$$

Updating strategies

Given two winning strategies Σ and Σ^{\prime}, we can define the partial winning strategy $\Sigma+\Sigma^{\prime}$ as

$$
\begin{aligned}
\left(\Sigma+\Sigma^{\prime}\right)(\phi, s)=\text { if } & (\phi, s) \in \operatorname{dom}(\Sigma) \\
& \text { then } \Sigma(\phi, s) \\
& \text { else } \Sigma^{\prime}(\phi, s)
\end{aligned}
$$

Strategy semantics

$$
\begin{aligned}
& \operatorname{SEM}(X)_{\eta}=\{(X, s) \mapsto * \mid s \in \eta(X)\} \\
& \operatorname{SEM}(p)_{\eta}=\{(p, s) \mapsto * \mid p \text { holds at } s\} \\
& \operatorname{SEM}(\neg p)_{\eta}=\{(p, s) \mapsto * \mid p \text { does not hold at } s\} \\
& \operatorname{SEM}(\phi \wedge \psi)_{\eta}=\operatorname{SEM}(\phi)_{\eta}+\operatorname{SEM}(\psi)_{\eta} \\
&+\left\{(\phi \wedge \psi, s) \mapsto * \mid(\phi, s) \in \operatorname{dom}\left(\operatorname{SEM}(\phi)_{\eta}\right)\right. \\
&\left.\wedge(\psi, s) \in \operatorname{dom}\left(\operatorname{SEM}(\psi)_{\eta}\right)\right\} \\
& \operatorname{SEM}(\phi \vee \psi)_{\eta}=\operatorname{SEM}(\phi)_{\eta}+\operatorname{SEM}(\psi)_{\eta} \\
&+\left\{(\phi \vee \psi, s) \mapsto 1 \mid(\phi, s) \in \operatorname{dom}\left(\operatorname{SEM}(\phi)_{\eta}\right)\right\} \\
&+\left\{(\phi \vee \psi, s) \mapsto 2 \mid(\psi, s) \in \operatorname{dom}\left(\operatorname{SEM}(\psi)_{\eta}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{SEM}([a] \phi)_{\eta} & =\operatorname{SEM}(\phi)_{\eta} \\
& +\left\{([a] \phi, s) \mapsto * \mid(\phi, s) \in \operatorname{dom}(\operatorname{SEM}(\phi))_{\eta}\right\} \\
\operatorname{SEM}(\langle a\rangle \phi)_{\eta} & =\operatorname{SEM}(\phi)_{\eta} \\
& +\left\{(\langle a\rangle \phi, s) \mapsto s^{\prime} \mid s \xrightarrow{a} s^{\prime} \wedge\left(\phi, s^{\prime}\right) \in \operatorname{dom}(\operatorname{SEM}(\phi))_{\eta}\right\}
\end{aligned}
$$

$\operatorname{SEM}(v X \cdot \phi)_{\eta}=\operatorname{SEM}(\phi)_{\eta[X:=\operatorname{sem}(\phi, \eta)]}$
$\operatorname{SEM}(\mu X . \phi)_{\eta}=\operatorname{ITER}_{X}(\phi, \eta,\{ \})$
$\operatorname{ITER}_{X}(\phi, \eta, \Sigma)=\operatorname{let} \Sigma^{\prime}:=\operatorname{SEM}(\phi)_{\eta[X:=\operatorname{dom}(\Sigma)]}$ in

$$
\text { if } \Sigma=\Sigma^{\prime} \text { then } \Sigma \text { else } \operatorname{ITER}_{X}\left(\phi, \eta, \Sigma^{\prime}\right)
$$

Checking strategies

Easy algorithm for checking whether a strategy is correct:

Run the strategy until you find a loop (hit the same formula at the same state again): then check whether the highest priority inside the loop is even (good) or odd (strategy is wrong!).

Can be implemented as simple recursive traversal.

Example: mutual exclusion (from Huth and Ryan 2004)

Mutex safety: sample run

```
% ./micromu.native huth-fig3.7.lts huth-fig3.7-safety.mu
Z =nu/1= ~c1 \/ ~ c2 /\ ([a]Z)
```

\#\#\# Execution time Mu.sem: 0.000000s
result: 01234567
\#\#\# Execution time Strat.sem: 0.003333s
-••
verifying for good state 0 :
TRAV Z , 0 , loop-search
TRAV ~ $c 1 ~ \ / ~ ~ ~ c 2 ~ / ~([a] Z) ~, ~ 0 ~, ~ l o o p-s e a r c h ~$
TRAV ~c1 \/ ~c2 , 0, loop-search
TRAV ~c1 , 0, loop-search

```
TRAV ~c1 , 0 , loop-search
TRAV ~ c1 , 0 , maxprio 0 here 0
TRAV ~c1 , 0 , maxprio 0 here 0
TRAV ([a]Z) , 0 , loop-search
state 0: true
verifying for good state 5:
TRAV Z , 5 , loop-search
TRAV ~c1 \/ ~c2 /\ ([a]Z) , 5 , loop-search
TRAV ~c1 \/ ~c2 , 5 , loop-search
TRAV ~c1 , 5 , loop-search
TRAV ~c1 , 5 , loop-search
TRAV ~c1 , 5 , maxprio 0 here 0
TRAV ~ c1 , 5 , maxprio 0 here 0
TRAV ([a]Z) , 5 , loop-search
TRAV Z , 4 , loop-search
TRAV ~}c1 \/ ~ c2 /\ ([a]Z) , 4 , loop-search
```

```
TRAV ~c1 \/ ~c2 , 4 , loop-search
TRAV ~c2 , 4 , loop-search
TRAV ~c2 , 4 , loop-search
TRAV ~c2 , 4 , maxprio 0 here 0
TRAV ~ c2 , 4, maxprio 0 here 0
TRAV ([a]Z) , 4 , loop-search
state 5: true
verifying for good state 6:
state 6: known good
verifying for good state 7:
state 7: known good
```

\#\#\# Execution time verify: 0.000000s
result: 01234567
verification passed

Mutex safety: strategy run

Mutex liveness: sample run

\% ./micromu.native huth-fig3.7.lts huth-fig3.7-liveness.mu
X =mu/4= c1 \/ ([a]X)
Z =nu/1= ~ $\mathrm{t} 1 \mathrm{\} / \mathrm{X} / \backslash([\mathrm{a}] Z)$
\#\#\# Execution time Mu.sem: 0.000000s result:

The formula holds nowhere: the strategy is empty. The mutex does not guarantee liveness. Why?

Mutex liveness: generating counterexamples

To generate a counter example, we can tell micromu to negate the formula using - c :
\% ./micromu.native -c huth-fig3.7.lts huth-fig3.7-liveness.mu
\#\#\# Execution time Mu.sem: 0.000000 s
\#\#\# Execution time Strat.sem: 0.003333s
\#\#\# Execution time gendot: $0.006666 s$
\#\#\# Execution time verify: 0.003333s
result: 01234567
verification passed
Looking at the strategy, we can find the counterexample.

Mutex liveness: counterexample strategy

The big loop corresponds to $0 \rightarrow 1 \rightarrow 3 \rightarrow 7 \rightarrow 1 \rightarrow$ $3 \rightarrow 7 \rightarrow \cdots$

Fixing the mutex

\% ./micromu.native huth-fig3.8.lts huth-fig3.7-liveness.mu

```
result: 0 1 2 3 4 5 6 7 8
verification passed
```


Implementation

compact: about ו kLOC OCaml (another ו kLOC thrown away during development), no external dependencies
quick: "worst-case" exponential example" \mathcal{G}_{1} takes 0:02:40 and uses 28 MB RAM (down from 3+ hours / 6+ GB...)
simple, recursive algorithms: verifier should be easy to port to proof assistant (Coq)

[^0]
Systems of equations

First version actually substituted variables inside μ-formulae: consumes exponential amount of memory with nested formulae.

Rewrite equations as a ordered system of equations:
Need order to restore $\nu Z .\left(\neg t_{1} \vee\left(\mu X . c_{1} \vee[a] X\right)\right) \wedge[a] Z \quad$ original formula.

Vastly simplifies

$$
\begin{aligned}
& Z \stackrel{v}{=}\left(\neg t_{1} \vee X\right) \wedge[a] Z \\
& X \stackrel{\mu}{=} c_{1} \vee[a] X
\end{aligned}
$$

makes v-case trivial, μ-case a lot easier.

Optimizations

- Caching of results for $v X . \phi$ case
- Avoiding OCaml polymorphic compare (compare_val)
- Using maps for strategies, not association lists (requires careful strategy update)
- Caching of verified states (else easily quadratic runtime)
- Very helpful: ocamlcp(1)/ocamlprof(1) and perf(1)

Future: formal verification

- The checker is meant to be a certified decision procedure
- Formally verifying the checker to be correct results in a verified implementation of μ-calculus
- Done so far: definitions of least and greatest fixpoints (on arbitrary sets), specialized version of Knaster-Tarski, μ-calculus set semantics
- To do: serialize strategies into Coq terms
- To do: implement checker for strategies (using finite sets)
- To do: prove checker correct
- To do: extract verified checker?

Questions?

Thank you.

References

[1] Oliver Friedmann. "An Exponential Lower Bound for the Parity Game Strategy Improvement Algorithm as We Know it". In: LICS. IEEE Computer Society, 2009, pp. 145-156. ISBN: 978-0-7695-3746-7.
[2] Martin Hofmann and Harald Rueß. "Certification for mucalculus with winning strategies". In: ArXiv e-prints (Jan. 2014). arXiv: 1401.1693 [cs. LO].
[3] Michael Huth and Mark Dermot Ryan. Logic in Computer Science: Modelling and Reasoning About Systems. 2nd. New York, NY, USA: Cambridge University Press, 2004, pp. IXIV, 1-427. ISBN: 052154310X.

[^0]: ${ }^{1} 15$ nested quantifiers, cf. Friedmann 2009, section 5 ff.

